

A COLLABORATIVE VISUALIZATION FRAMEWORK USING JINI™

TECHNOLOGY

THESIS

Chad M. Harris, Captain, USAF

AFIT/GCS/ENG/02M-04

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Report Documentation Page

Report Date
5 Mar 02

Report Type
Final

Dates Covered (from... to)
Mar 01 - Mar 02

Title and Subtitle
A Collaborative Visualization Framework Using
JINI Technology

Contract Number

Grant Number

Program Element Number

Author(s)
Capt Chad M. Harris, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and
Address(es)
Air Force Institute of Technology Graduate School
of Engineering and Management (AFIT/EN) 2950
P Street, Bldg 640 WPAFB OH 45433-7765

Performing Organization Report Number
AFIT/GCS/ENG/02M-04

Sponsoring/Monitoring Agency Name(s) and
Address(es)
AFRL/IFTC Atttn: Dr. Douglas Hozhauer 26
Electronics Parkway Rome, NY 13441-4514

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
The original document contains color images.

Abstract
It is difficult to achieve mutual understanding of complex information between individuals that are
separated geographically. Two well-known techniques commonly used to deal with this difficultly are
collaboration and information visualization. This thesis develops a generic flexible framework that
supports both collaboration and information visualization. It introduces the Collaborative Visualization
Environment (COVE) framework, which simplifies the development of real-time synchronous multi-user
applications by decoupling the elements of collaboration from the application. This allows developers to
focus on building applications and leave the difficulties of collaboration (i.e. concurrency controls, user
awareness, session management, etc.) to the framework. The framework uses an object sharing approach
to share information and views between participants in a collaborative session. This approach takes
advantage of several Java technologies (i.e. JavaBeans, Jini, and JavaSpaces). JavaBeans establish a
well-known standard for applications to operate within the framework. Jini services provide framework
stability and enable code sharing across the network. Objects are shared between remote clients through
the JavaSpaces service.

Subject Terms
Collaboration, Information Visualization, Framework, Software, Architectures, Jini, JavaSpaces,
JavaBeans.

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
130

The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the United States Air Force, Department of Defense or the U.S. Government.

AFIT/GCS/ENG/02M-04

A Collaborative Visualization Framework Using Jini™

Technology

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Chad M. Harris, B. S.

Captain, USAF

March 2002

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Acknowledgments

First and foremost I express my love to my Heavenly Father. His great love and pouring out of

blessings have helped me make it through this education experience. I spent many hours on my knees

pleading for His help and I am grateful to Him for the help I received.

My deepest love and gratitude goes to my lovely wife who supported me through thick and thin

and kept me going. I appreciate all the words of encouragement and sacrifices she made through the times

I struggled.

I express my love to my two wonderful children for their love, smiles and kisses. They provide

me a reality check each day with the simple little things they do. They reminded me of the importance of

my higher calling of being a father and a husband to my family.

This research effort was sponsored by the Information Technology Division of Air Force Research

Labs, Information Directorate, Rome Labs (AFRL/IFTC). I express appreciation to Dr. Douglas

Holzhauer, who provided ideas and sponsorship. I would like to express my appreciation to my advisor Lt.

Col. Timothy M. Jacobs. Thank you for the guidance and help you gave me through this research effort. I

would also like to thank the other members of my committee, Maj. Karl Mathias and Dr. Gregg Gunsch.

iv

Table of Contents

Page

Acknowledgments ... iv
List of Figures..viii
List of Tables .. x
Abstract.. xi
I. Introduction ... 1

1.1 Background .. 2
1.2 Problem Statement ... 4

1.2.1 Goals... 5
1.2.2 Constraints .. 6

1.3 Document Overview... 8
II. Background .. 9

2.1 Command and Control (C2) Domain ... 9
2.1.1 OODA Loop ... 9

2.2 Visionary Concepts .. 12
2.2.1 Joint Vision 2020.. 12
2.2.2 Air Force Vision 2020 .. 13
2.2.3 Joint Battlespace InfoSphere (JBI) ... 14

2.2.3.1 JBI Basic Concept ... 14
2.2.3.2 Enabling Technologies.. 16

2.3 Application Frameworks .. 16
2.3.1 Object-Oriented Techniques ...17

2.4 Collaboration.. 17
2.4.1 Types of Collaborations.. 18

2.4.1.1 Asynchronous Collaboration... 18
2.4.1.2 Synchronous Collaboration ... 18

2.4.2 Levels of Collaboration .. 18
2.4.3 Elements of Collaboration .. 19

2.5 Information Visualization... 20
2.5.1 Knowledge Crystallization ... 21
2.5.2 Maps ... 22
2.5.3 Symbols .. 22
2.5.4 Labels.. 24
2.5.5 Color ... 24
2.5.6 Interaction ... 25

2.5.6.1 Overview and Detail.. 25
2.5.6.2 Filtering... 26
2.5.6.3 Zoom ... 26

2.6 Distributed Systems.. 26
2.6.1 Performance and Latency ... 27
2.6.2 Failures ... 28
2.6.3 Concurrency and Consistency... 28

2.7 Enabling Technologies ... 29
2.7.1 Jini™... 29

v

Page

2.7.1.1 Discovery .. 32
2.7.1.2 Lookup .. 33
2.7.1.3 Leasing .. 33
2.7.1.4 Remote Events .. 33
2.7.1.5 Transactions .. 33

2.7.2 JavaSpaces™ .. 34
2.8 Related Research .. 37

2.8.1 NCSA Habanero ... 38
2.8.2 DISCIPLE Framework ... 38
2.8.3 COAST ... 39
2.8.4 ColVis... 40

2.9 Background Summary.. 41
III. Methodology and Design.. 42

3.1 Collaborative Framework... 43
3.1.1 Criteria .. 43
3.1.2 Visual Collaboration ... 46

3.2 System Architecture/Design... 47
3.2.1 Architecture Choices... 47
3.2.2 Session Service Architecture .. 50
3.2.3 Object Sharing Via JavaSpaces™... 51

3.2.3.1 Concurrency Control ... 51
3.2.3.2 Consistency Control .. 52
3.2.3.3 JavaBeans™.. 52
3.2.3.4 Session Manager ... 54

3.2.4 Replicated Client Architecture.. 54
3.2.4.1 Desktop ... 55
3.2.4.2 Workspace... 56

3.2.4.2.1 Bean Loading... 57
3.2.4.2.2 Bean Synchronization.. 58

IV. Implementation... 59
4.1 Session Service Implementation... 59
4.2 Collaborative Framework Components.. 61

4.2.1 SessionManager Class .. 61
4.2.2 Desktop Class ... 63
4.2.3 Session Class .. 67
4.2.4 Workspace .. 67
4.2.5 WorkspaceContents Class... 68
4.2.6 UserAccount Class.. 68

4.3 Event Processing .. 68
4.3.1 Synchronization Mechanism... 68
4.3.2 Distributed/Remote Event Model ... 69
4.3.3 SessionManager Listener .. 73
4.3.4 Workspace Contents Listener ... 74
4.3.5 Glass Pane... 75
4.3.6 Bean Listener .. 76

4.4 Remote Code Access.. 76
4.5 Transactions – Solutions to Consistency and Partial Failures .. 77

V. Results.. 80
5.1 Comparative Analysis .. 80

vi

Page

5.1.1 Criteria Satisfaction .. 80
5.1.2 Summary of Analysis.. 85

5.2 COVE Framework Benefits ... 86
5.3 Serialization Problem with JavaBeans™.. 87

VI. Conclusions and Future Work .. 89
6.1 Conclusion.. 89
6.2 Future Work ... 91

6.2.1 Enhancements ... 91
6.2.1.1 Customizable Components.. 91
6.2.1.2 Protection Mechanisms ... 92
6.2.1.3 Session Recording and Playback... 92
6.2.1.4 Complex Bean Integration .. 92
6.2.1.5 Passing of Object Differences ... 92

6.2.2 Addition Visual Awareness Capabilities .. 93
6.2.2.1 TelePointers... 93
6.2.2.2 Radar Views.. 93

6.3 Final Concluding Thoughts .. 94
A. Appendix A - UML Diagrams ... 95

A.1 Relevant System Packages .. 95
A.2 commands Package ... 96
A.3 desktop Package .. 97
A.4 loader Package... 99
A.5 jspace Package... 100
A.6 toolbar Package ... 103
A.7 workspace Package.. 104

B. Appendix B - RMI Information.. 105
B.1 Overview ... 105
B.2 Remote Interfaces .. 105
B.3 Stubs and Skeletons ... 106
B.4 Serialization ... 107
B.5 Parameters and Return Values... 108
B.6 Dynamic Code Loading... 108
B.7 Security Concerns.. 110
B.8 Building, Compiling and Running RMI Programs .. 110

Bibliography ... 112
Vita .. 117

vii

List of Figures

Page

Figure 1. Current Combat Information Reality [57] .. 3
Figure 2. Joint Battlespace InfoSphere of Tomorrow [57] .. 4
Figure 3. OODA Loop Process [2, 37] .. 11
Figure 4. Components of Battlespace InfoSphere [57] .. 15
Figure 5. Levels of Collaboration .. 19
Figure 6. C2 Symbols Example ... 23
Figure 7. Jini™ Service Model [55] .. 32
Figure 8. Entry Before/After Serialization [16] ... 35
Figure 9. JavaSpaces™ Operations [19] .. 36
Figure 10. Visual Collaboration Abstraction Diagram .. 47
Figure 11. Replication Architecture [29] ... 48
Figure 12. Centralized Architecture [29] ... 49
Figure 13. COVE Framework Architecture ... 49
Figure 14. COVE Layered Architecture .. 50
Figure 15. COVE Desktop User Interface ... 56
Figure 16. COVE Workspace User Interface... 57
Figure 17. Bean Browser ... 58
Figure 18. Session Service UML Diagram .. 60
Figure 19. SessionManager Class Diagram... 62
Figure 20. Desktop Monitor Display ... 63
Figure 21. COVE - GUI to Service Relationship Diagram.. 64
Figure 22. Desktop Command Pattern Usage .. 66
Figure 23. Command Pattern Class Diagram... 67
Figure 24. Delegation-base Event Model [56] ... 70
Figure 25. Jini™ Remote Event Model [56].. 72
Figure 26. SessionManagerListener UML Diagram.. 73
Figure 27. Workspace Components UML Diagram... 75
Figure 28. Glass Pane Diagram [50] .. 76

viii

Page

Figure 29. Transaction Creation Code Example .. 78
Figure 30. Login Transaction Code Example .. 79
Figure 31. Radar view example [21].. 94
Figure 32. COVE System Packages... 95
Figure 33. Commands Package Classes... 96
Figure 34. Desktop Package Classes.. 97
Figure 35. Utility Classes used in cove.desktop Package .. 98
Figure 36. Loader Classes.. 99
Figure 37. Session Service Classes .. 100
Figure 38. Session Management Classes ... 101
Figure 39. Various Classes used in cove.jspace Package... 102
Figure 40. Toolbar Package Classes .. 103
Figure 41. Workspace Classes ... 104
Figure 42. RMI - Client and Server Communicate via Stubs and Skeletons [16]...................................... 107

ix

List of Tables

Page

Table 1. Unit, Installation, and Site Symbol Frames [12].. 24
Table 2. Color Representation [12].. 25
Table 3. Frameworks Comparison Analysis Table .. 86

x

AFIT/GCS/ENG/02M-04

Abstract

It is difficult to achieve mutual understanding of complex information between individuals that are

separated geographically. Two well-known techniques commonly used to deal with this difficultly are

collaboration and information visualization. This thesis develops a generic flexible framework that

supports both collaboration and information visualization. It introduces the Collaborative Visualization

Environment (COVE) framework, which simplifies the development of real-time synchronous multi-user

applications by decoupling the elements of collaboration from the application. This allows developers to

focus on building applications and leave the difficulties of collaboration (i.e. concurrency controls, user

awareness, session management, etc.) to the framework.

The framework uses an object sharing approach to share information and views between

participants in a collaborative session. This approach takes advantage of several Java technologies (i.e.

JavaBeans™, Jini™, and JavaSpaces™). JavaBeans™ establish a well-known standard for applications to

operate within the framework. Jini™ services provide framework stability and enable code sharing across

the network. Objects are shared between remote clients through the JavaSpaces™ service.

xi

A COLLABORATIVE VISUALIZATION FRAMEWORK

USING JINI™ TECHNOLOGY

I. Introduction

It is very difficult to achieve mutual understanding of complex information between individuals

that are separated geographically. Common gestures that are regularly used to communicate one’s feelings

and emphasize important elements are not entirely conveyed between individuals that are not in a face-to-

face meeting. Thus, when separated geographically, other techniques must be used to help individuals

communicate and convey ideas. Joint understanding of complex data can be improved through the use of

information visualization techniques and interaction with the information through navigation. In this

research the concept of visualizing information through a collaborative environment is known as

collaborative visualization.

Information visualization techniques present information visually and provide a set of tools to

interact with the data, thus allowing for a greater understanding of the information. Collaboration

techniques are then used to share and interact with the information and other people to further the mutual

understanding of the individuals involved. This capability to enhance mutual understanding is relevant in

many areas of industry, education and the military.

One important application of collaborative visualization is in the realm of command and control

(C2). Command and control systems provide commanders with critical information to aid them in making

decisions. Hidden or obscured information may lead to incorrect decisions resulting in unnecessary

damage, injury or death. Collaborative visualization enables experts to uncover the hidden information and

provide it to commanders so decisions are made that minimize risk and maximize desired outcomes.

1

Teams or divisions of people are found in almost every facet of life, and certainly when these

people are separated geographically, communication and collaboration barriers can be created. This holds

true in a combat situation where many different systems must work together to provide leaders with

information to guide their decisions. The creation of nonintegrated repositories of data or hardware

components, each designed for a specific purpose that is not reconciled with each another is the concept

referred to as “stovepipe” systems. This creates serious problems for the logistics communities due to the

uniqueness of systems within the military. Providing a mechanism for teams of engineers to collaborate

and share ideas and provide mutual understanding could greatly increase the military’s ability to develop

and sustain new weapon and support systems.

In the education arena, distance learning and satellite education and training are becoming

increasingly more popular. The goal of such programs is to provide educational and training services to

people across the globe and to bring people together to collaborate and exchange ideas and work together to

edify each other. Collaborative visualization has similar goals in that we want to provide a mechanism to

increase understanding through visualization and interactive communication. The military can use these

techniques to train people all over the world, saving the government money in travel and accommodation

costs.

The importance of collaborative visualization can be seen in all walks of society, and especially in

the Department of Defense (DoD). The focus of this thesis is the application of collaborative visualization

techniques to develop a generic framework to support the command and control arena.

1.1 Background

The current capabilities of combat weapon systems are limited in many different ways. They

involve labor-intensive collection and coordination processes to disseminate relevant information to

commanders and people within a battlespace. Current processes and systems gather great amounts of data,

but the ability to make use of that data is limited, thus creating an environment for information starvation.

Information starvation is the inability to make effective use of the current information already gathered,

2

thus commanders do not have the necessary information needed to make advantageous decisions. In

addition, the immense amount of data causes information overload, due to the fact that there is too much

data to process. Currently there is little interoperability in joint and coalition force systems, which creates

difficult circumstances to integrate information and provide a synergy for operations. Figure 1 typifies how

our current combat systems have worked in the past. Interoperability exists between some systems, but

little cross-flow of information between systems in the horizontal direction is present. The lack of cross-

flow creates systems that are nonintegrated and designed for specific purposes. The lack of interoperability

creates these “stovepipes” and they hamper the effectiveness of forces to fight and win battles. Disjoint

workflows and wasted man-hours result from this lack of synergy. The Department of Defense and other

government and private agencies collect information every day. This information is being underutilized,

often duplicated, and not fused together to create a seamless current overall view of the battlespace. This

hinders the ability of a commander to make the right decision in the right time.

Figure 1. Current Combat Information Reality [57]

The United States Air Force Scientific Advisory Board presented the concept for the Joint

Battlespace InfoSphere (JBI) in the report Information Management to Support the Warrior [57]. This

concept was envisioned to help overcome these challenges that face our combat systems today. The JBI “is

a combat information management system that provides individual users with the specific information

needed to accomplish their functional responsibilities during a crisis or conflict” [48]. Its main challenge is

“providing the right information at the right time, disseminated and displayed in the right way, so

3

commanders and crew chiefs can do the right things in the right time in the right way” and do it faster than

the enemy [48]. The vision of JBI is to integrate or fuse current combat systems in a seamless environment

known as the “Battlespace InfoSphere”, as depicted in Figure 2.

Figure 2. Joint Battlespace InfoSphere of Tomorrow [57]

The Battlespace InfoSphere can integrate information systems of today and tomorrow and should

provide the synergy needed for the future. Combat operations in the future are likely to depend on

integration of information systems, due to the need to share information. This is evident today due to the

events of September 11, 2001 in New York City, New York. Current military operations in Afghanistan

and throughout the world depend on shared information sources from around the world. Further JBI

discussion follows in Chapter II.

1.2 Problem Statement

The focus of this research is to develop a flexible collaborative visualization framework for

integrating tools (implemented as JavaBeans™) into an environment that enables collaboration between

geographically separated users. Through a review of related work, the following characteristics have been

identified as important for such a framework: automation, shared state, consistency, scalability,

4

communication, robustness, dynamic loading, coupling, language support, flexibility, coordination of

action, monitoring, and protection. These characteristics are discussed in detail in Section 3.1.1.

A comparative analysis between the developed framework and others is performed to evaluate the

overall effectiveness of the framework. The criteria for the evaluation is a measure of how well each

framework fulfills the characteristics listed above.

1.2.1 Goals

The overall goal of this research is to create a framework that supports both collaboration and

information visualization techniques. To measure the success of the framework, the following sub-goals

are established:

• Shared interaction – the collaboration between geographically separated users interacting with

data and visual representations to accomplish tasks. The characteristics used to measure this

goal are: shared state, data consistency, communication, coordination of action, monitoring,

and protection.

• Visual sharing – remote users collaborate at a higher level of abstraction than the data through

the sharing of visual objects. The criteria established to measure the effectiveness of this goal

are visual consistency and visual collaboration.

• Remote code access –users access remote data and applications without the need for previous

installation. Dynamic loading is used to measure the effectiveness of the framework in

meeting this goal.

• Easy tool integration – flexibility to easily integrate any Java tool and make it collaborative.

To measure this goal the following criteria are used: generality, automation, and coupling.

• Facilitate software development – the purpose of a framework is to ease the burden of

developers in developing software. The following characteristics are defined to measure the

5

capability of the framework: scalability, robustness, standard language support, and

flexibility.

Fayad, Schmidt, and Johnson [18] added that a framework must be modular, extensible, and reusable.

Modularity is the division of software into logical components, thus reducing the complexity and effort

required to understand and maintain software. Extensibility is the ability for software to be extended to

meet the needs of new users. This allows for customization of new applications and services. Reusability

enables generic components to be mixed and matched to produce the desired functionality of an

application.

With the understanding of what makes up a good framework, the framework developed in this

research must include common elements of a collaborative system along with support for information

visualization techniques. Some key elements of a collaborative system as defined by Gutwin and

Greenburg [22] are: explicit communication, consequential communication, coordination of action,

monitoring, assistance, and protection. These concepts are discussed further in Chapter II. These

collaborative components provide a good measure to ensure this framework supports the necessary

collaborative objective. In addition, the framework should include a set of information visualization tools

and techniques to display large sets of data. The techniques used in the framework need to be generic to

support many different types of information.

In summary, this research should produce a modular, extensible and reusable collaborative

visualization framework. This framework should be able to share information in a common space, and

enable communication of individuals effectively and efficiently, in addition to providing effective

information visualization tools to display large quantities of data.

1.2.2 Constraints

There are a number of limiting factors imposed upon this development and research effort. Jini™

technology is the primary focus for communication between hosts and provides the mechanism for object

sharing. This restriction is due to the desires of the sponsor, Air Force Research Labs, Information

6

Technology Division (AFRL/IFTC), to use Jini™ technology as one of many middleware technologies as

part of the backbone for the Joint Battlespace InfoSphere. Additionally, Jini™ technology provides the

desired capabilities needed in the distributed collaborative environment.

One of the desired capabilities of the framework is to enable collaboration at a higher level of

abstraction than that of the data. This concept of visual sharing has the potential to require greater amounts

of bandwidth due to the need to send entire objects across a network instead of small data changes. Such

bandwidth issues are not explicitly considered in the design of the framework.

To develop a framework that supports every type of application and programming construct

without any constraints would be an arduous task if not impossible. Thus to limit the set of applications,

the JavaBeans™ [52] component architecture is used. This allows for a generic solution to be developed

by restricting the possibilities of applications to a well-defined component architecture. Thus, the design of

the framework can utilize the JavaBeans™ technology to its advantage.

Voice and video collaboration is not addressed as part of the research, due to the fact that Jini™

does not readily support data streaming. Commercial-off-the-Shelf (COTS) products, like Windows

NetMeeting and others, may be appropriate to use for video and voice communications.

Consequential communication is information that is “given off” unintentionally by others as they

go about their activities. This information is communicated through the manipulation of artifacts or the

characteristic actions of a person in a workspace [22]. Some consequential elements are handled by the use

of annotation tools within a whiteboard environment. Finger pointing can be simulated by mouse

annotation, thus covering a small element of consequential communication. This research does not address

every consequential communication element of a collaborative system. Much research is needed in this

area to be able to capture facial gestures, finger pointing, and other forms of body language. Video streams

could be utilized to capture this type of information, but are not considered in this research.

7

1.3 Document Overview

The first chapter describes the overall objectives of this thesis and establishes the importance of

information to the JBI concept. Chapter II provides an in-depth discussion of background material related

to this thesis, with focus on JBI concepts, collaborative techniques and technologies, visualization

techniques and frameworks design. Jini™ technology is discussed extensively in this chapter to provide

some background information on why it was chosen as the potential solution for backbone communication.

Chapter III discusses the problem approach and design of the framework itself. Chapter IV discusses the

implementation of the framework and provides examples of its application. Chapter V summarizes the

results of the overall effectiveness of the framework along with its impact on the JBI concept. Chapter VI

provides conclusions and recommended areas for future research.

8

II. Background

This chapter provides background information to help in understanding why certain technologies

and approaches are taken in this research. This chapter discusses the domain in which this research is

relevant, along with related research.

2.1 Command and Control (C2) Domain

Command and Control (C2) systems are essential for successful completion of military operations.

C2 can be defined as “the process of gathering information, assessing situations, identifying objectives,

developing alternative courses of action, deciding on a course of action, transmitting orders, and then

monitoring execution” [34]. Based on this understanding, C2 systems must have the ability to process

large amounts of data in a short period of time and present a “big picture” to the commander. This may

require collaboration with many units, agencies and services within a battlefield to collect all the necessary

information. Information visualization techniques can be used to process immense quantities of data

quickly and display it in a manner to help commanders understand this data. In addition, collaboration

techniques aid the convergence of ideas to a “best” decision more quickly because ideas are being shared

simultaneously. These techniques enable command and control systems to collaborate information at many

levels of command, from the Commander in Chief to the infantry soldier out on the front lines of battle.

C2 systems also rely on many different types of simulations, which require great amounts of data

processing. The outputs of these simulations are difficult to understand due to the amount and complexity

of the data, so visualization can be performed to make sense of the information. These visualizations may

become large in size; thus, the ability to handle transmission of complex information is essential.

2.1.1 OODA Loop

A key aspect in any command and control system is the ability to orient oneself to a situation and

then make a well-informed decision to gain an advantage over an enemy. Col John R. Boyd generalized

9

this process in 1987, in his paper “Patterns of Conflict” and called it the OODA loop model. This model

consisted of four basic steps: Observe, Orient, Decide, and Act (OODA). This model defines the cognitive

process of how decisions are made and indicates the activities that go on to produce actions from

circumstances. Many branches of military service have adopted this model and incorporated it in their

command and control doctrine due to its simplicity and completeness. This model essentially describes the

functions that C2 systems must provide to commanders to aid in the decision making process.

As described by Grant T. Hammond,

Knowledge of the strategic environment is the first priority. Secondly, one must be able
to interact with the environment and those within it appropriately. You must be able to
observe and orient yourself in such a way that you can indeed survive and prosper by
shaping the environment where possible to your own ends, by adapting to it where you
must. Doing so requires a complex set of relationships that involve both isolation and
interaction. Knowing when each is appropriate is critical to your success. In OODA
Loop fashion, one must continually observe, orient, decide and act in order to achieve
and maintain freedom of action and maximize the chances for survival and prosperity.
One does so through a combination of rapidity, variety, harmony, and initiative. It is
these concepts that are the core of ‘Boyd’s Way.’ Rapidity of action or reaction is
required to maintain or regain initiative. Variety is required so one is not predictable, so
there is no pattern recognition for a foe to allow him to know of your actions in advance
and thus plan to defeat them. Harmony is the fit with the environment and others
operating in it. Initiative—taking charge of your own destiny—is required if one is to
master circumstances rather than be mastered by them. All of course, would be focused
on attaining the specified Objective that is implicit in this discussion. [25]

To understand the OODA loop process, each component is described below.

The first element, (O)bservation, is the process of taking in and absorbing one's
environment. This view would be entirely empirical if the observer could guarantee the
reliability and objectivity of the sensors viewing the environment. The second element,
(O)rientation, is the most important step in the loop. [Orientation is process by which
data is simulated and processed into information and understanding. In other words, it is
the sense-making phase of the model.] It is the most easily corruptible of the four steps.
Orientation requires the observer to yield to frail human qualities, such as culture,
heritage, and, most importantly, previous experience. This is one place in the cycle
where there is feedback from previous evolutions. Orientation may be drastically altered
based on the experience of success or failure from a proceeding evolution. The third
element, (D)eciding, is the cognitive process of selecting a course of action among the
options that present themselves from the observation and orientation portions. As Boyd
[writes], ‘In short we engage in a complex process of analysis and synthesis before
selecting a course of action … we assess a variety of competing, independent channels of
information from a variety of domains to cope with the particular circumstance which
confronts us.’ The final element, (A)ction, is simply doing the course of action selected
in the decision portion of the cycle; however, in some instances it is the most difficult to
implement. [9]

10

Figure 3 shows how each phase works together within the model to produce action from the

information gathered. In this figure orientation implicitly provides guidance and control to shape

observation, decision, and action. Orientation is in turn, shaped by the feedback and other phenomena

coming into our sensing or observation window. This is why the orientation phase is the most important

and volatile of all phases. Orientation accounts for cultural traditions, genetic heritage, previous

experiences, and new information. Each facet accounts for the different element that affects our

orientation.

Outside
Information

Unfolding
Circumstances

Unfolding
Environmental

Interaction

Observation Orientation Decision Action

Obser-
vations

Cultural
Traditions

Genetic
Heritage

View
Information Previous

Experience

Analysis
Synthesis

Analysis
Synthesis

Decision
(Hypothesis)

Action
(testing)Feed

Forward

Feed

Forward

Feed

Forward

Feedback
Feedback

Unfolding
Interaction

with
Environment

Implicit
Guidance &

Control

Implicit
Guidance &

Control

Outside
Information

Unfolding
Circumstances

Unfolding
Environmental

Interaction

Observation Orientation Decision Action

Obser-
vations

Cultural
Traditions

Genetic
Heritage

View
Information Previous

Experience

Analysis
Synthesis

Analysis
Synthesis

Decision
(Hypothesis)

Action
(testing)Feed

Forward

Feed

Forward

Feed

Forward

Feedback
Feedback

Unfolding
Interaction

with
Environment

Implicit
Guidance &

Control

Implicit
Guidance &

Control

Figure 3. OODA Loop Process [2, 37]

Cultural traditions and genetic heritage provide rooted experience and customs that form a frame

of reference from which to orient our minds. Previous experience provides invaluable historical

perspective when placing information into context. Hopefully we learn from previous mistakes and history

and make decisions based on what worked and what didn’t work. New information changes the way we

orient ourselves because it brings new light to the situations at hand. By having additional information,

commanders can adjust to the circumstances and ensure that the decisions they make minimize casualties

and maximize effectiveness.

11

2.2 Visionary Concepts

To help understand the focus of this research it is imperative to understand the underlying theory

and vision documents that guide the Department of Defense in accomplishing its mission.

2.2.1 Joint Vision 2020

Joint Vision 2020 is a visionary document that describes the Chairman of the Joint Chief of Staff’s

(CJCS) vision for future military joint forces. Our military force has a primary purpose to fight and win the

nation’s wars. This requires a vision of “Dedicated individuals and innovative organizations transforming

the joint force for the 21st Century to achieve full spectrum dominance – persuasive in peace, decisive in

war, and preeminent in any form of conflict” [11]. This enables the United States to protect our interests

around the world and our nation’s freedoms.

To achieve full spectrum dominance, the military must continue to invest in and develop new

military capabilities. The continued development and proliferation of information technologies will change

the conduct of military operations. Our ability to achieve full spectrum dominance makes information

superiority a key enabler to change the joint command and control system for the future.

Information was the key to victory throughout history. However, information superiority is only

useful when it is effectively translated into superior knowledge and decisions. “The joint force must be

able to take advantage of superior information converted to superior knowledge to achieve ‘decision

superiority’ – better decisions arrived at and implemented faster than an opponent can react” [11].

The concept of the global information grid provides a network-centric environment that provides

global interconnectivity which will enhance combat power. This information-sharing environment for the

future will require not only technological advances, but also changes in policy, organization structure and

doctrines to achieve the goal. Thus, to help reach the goals set forth in Joint Vision 2020, a mechanism for

information sharing is needed. This research focuses on creating a framework that enables an information-

sharing environment.

12

2.2.2 Air Force Vision 2020

In response to the Joint Vision 2020, F. Whitten Peters, the Secretary of the Air Force, and

General Michael E. Ryan, United States Air Force Chief of Staff, produced “America’s Air Force

Vision 2020” [10]. This document provides a vision to how the United States Air Force will meet the

demands of the future.

In a world that is globally connected, national security and international stability
are vital foundations for America’s prosperity. Assuring security and stability require
global vigilance, reach and power – global vigilance to anticipate and deter threats,
strategic reach to curb crises and overwhelming power to prevail in conflicts and win
America’s wars. [10]

With these defined objectives the United States Air Force will realize full spectrum dominance envisioned

by Joint Vision 2020.

To meet these objectives requires dedicated men and women who lead effectively at all levels,

resources necessary to gather information and provide command and control support, and superior weapon

platforms necessary to accomplish missions. The goal of this research is to develop support tools that will

aid leaders at all levels to make good decision and share information.

“Information superiority will be a vital enabler of that capability” [10]. This goal of information

superiority requires technology to gather, fuse and integrate new and existing systems to enable

unprecedented access to information. “We’ll rely increasingly on distributed (or reach back) operation to

effectively sustain our forces, providing time-definite delivery of needed capabilities. Fast, flexible,

responsive, reliable support will be the foundation of all Air Force operations” [10]. The reliance of

distributed systems will require all types of collaboration in the future. This research is geared to help in

providing a technological solution to visual collaboration for command and control systems and other

relevant military domains.

13

2.2.3 Joint Battlespace InfoSphere (JBI)

Information superiority is a recurring theme in the Joint Vision 2020 and the Air Force

Vision 2020. As was stated in the introduction, the challenge is “to provide the right information at the

right time and disseminate or display it in the right way so commanders will act in the right way at the right

time to defeat their adversary” [57]. Information superiority is essential if this objective is to be met.

Therefore, the United States Air Force Scientific Advisory Board developed the concept of a Joint

Battlespace Infosphere (JBI) as the vision for future information systems. “The JBI is a conceptual combat

information management system that provides individual users with the specific information required for

their functional responsibilities during crisis or conflict” [35]. “The Battlespace Infosphere (BI) must

provide integrated mission understanding, shared awareness, shared planning, shared execution, shared

visualization, shared support, and [a] shared future view” [35].

2.2.3.1 JBI Basic Concept

The JBI objective is to provide a mechanism to interpret information and make decisions faster

than the enemy, thereby ensuring information superiority. Current legacy information systems provide

much information to today’s combatants, but they are disjoint and poorly organized. A network-centric

approach to information systems must be achieved to support joint and coalition operations.

Network-centric warfare is a first step in the direction of forming a common view of the
battlespace by ensuring ubiquitous connectivity. Network-centric systems gain their
operational advantage by integrating existing planning and warfighting systems via a
communications network. The BI extends the concept of the network-centric system. It
remains essential that existing and evolving function-specific systems be interconnected
and able to intercommunicate. But in the BI, capabilities for intelligent data
transformation, information exchange, knowledge sharing, and processing provide the
operational advantage. [35]

The BI provides a highly tailored repository of, or access to, information that is
designed to support a particular geographic area or mission. The intent of the BI is to
have a ‘single place,’ a ‘virtual system of information systems,’ that serves as a
clearinghouse and a workspace for anyone contributing to the accomplishment of the
operation—for example, weather, intelligence, logistics, or personnel. The use of the BI
seamlessly integrates multiple sources of data, enables automated manipulation of data,
provides faster response times, and produces tailored information to support warfighter
decision making throughout all functional staff activities. [35]

14

There are three main broad categories that allow for interaction with the BI: input, manipulation

and interaction. Information must be placed in the InfoSphere, followed by its manipulation to create

knowledge, and finishing with people gaining access to the knowledge. The basic functions of each

category are depicted in Figure 4.

Manipulate
To Create
Knowledge

Interact

Input

Representation

Common

Combat
Support
Products

Fusion
Products

Planning
Execution
Products

Command
Guidance

User
Information

Products & DBs

Use-Driven
Information

DisseminationTask-
Centered
Information
Discovery

Automatic
Formatting
& Filtering

Decision-
Centric
Presentations

Publish

Subscribe

Transform

Query

Control

Figure 4. Components of Battlespace InfoSphere [57]

Each element in the BI is an object that encapsulates some information about the battlespace.

Objects are input into the BI and are made available for manipulation within the BI. Objects may be

manipulated in five ways: publish, subscribe, transform, query and control. Publishing objects makes them

available to communities for distributed use. Users wishing to use these object then subscribe to them and

are thus provided with the information these objects represent. A transformation operation is needed to

convert objects from one format to another. The query capability allows the large repository of information

stored in the BI to be searched. Control provides a mechanism to administer and organize the objects.

These actions provide the mechanism for users of the BI to manipulate the information and gain

understanding of the battlespace. This figure shows how input is received via many different forms (i.e.

Combat Support, Fusion, Planning Execution products, etc.) and compiled into a common representation.

15

The five manipulation mechanisms enable information to be composed into a common format, as well as

enabling users to interact with the information. Users interact with the common representation through an

application that supports different strategies (e.g., Decision-Centric Presentations, Task-Centered

Information Discovery, etc.), thus enabling the manipulation of information to create knowledge.

The outcome of this research provides a small piece in the information sharing of the JBI concept.

This idea of providing mechanisms for users to interact with information is key to the success of the JBI. A

framework that supports collaborative visualization will add another capability desired in the JBI. With

this framework, task-centered information and data-centric presentation can be aided.

2.2.3.2 Enabling Technologies

The vision of the JBI will require many enabling technologies to make this possible. As one small

part of the JBI effort, Air Force Research Labs, Information Directorate, Rome Labs is looking into the

feasibility of integrating military data into a Jini™ based network. Jini™ technology is a sophisticated

platform to build network-aware applications. This technology makes it possible for users to access

resources located anywhere on the network. In addition, network resources and devices can join and leave

the network without any human intervention or manual configuration. The focus on Jini™ is due to its

robustness as a network protocol. The focus of this research will help in this effort by using Jini™ as a

backbone for a collaborative visualization framework.

2.3 Application Frameworks

An application framework is a “reusable, semi-complete application that can be specialized to

produce custom applications” [18]. Application frameworks describe both the components and how each

component interacts. Another definition, described by Gamma, is “a set of cooperating classes that makes

up a reusable design for a specific class of software. A framework provides architectural guidance by

partitioning the design into abstract classes and defining their responsibilities and collaborations” [18].

16

2.3.1 Object-Oriented Techniques

Object-oriented (OO) techniques make design and implementation of application frameworks

much easier. They allow for the definition of abstract classes or components that provide building blocks

for an application framework. OO application frameworks take advantage of data abstraction,

polymorphism, and inheritance. Using data abstraction, the framework can present an interface for a class

and hide all the underlying details. Polymorphism lets the developer mix and match components, lets the

object change its collaboration at runtime, and makes it possible to create generic objects that can work in

many different applications. Object hierarchies can be developed that give developers the ability to

customize components from a framework in their specific applications.

A common observation made about framework design is that it takes iterations to fully reach the

maturity of its intended purpose. Additional information is inevitably discovered later in the development

process, which leads to iterations. Frameworks usually implement the explicit parts of the design that are

likely to change, forcing iterations to occur. Frameworks are generally large sets of generic components

that are collected and developed over time from sets of desired functions to suit the needs of a problem. It

is impractical to analyze and design every conceivable scenario prior to implementation. Current trends are

to build the framework iteratively by adding additional capabilities and components later on in its life

cycle [18].

2.4 Collaboration

For purposes of this research, collaboration is defined as “two or more geographically dispersed

individuals working together to share and exchange data, information, knowledge, and actions” [36]. The

product of collaboration is loosely defined and may include a decision, a document or any outcome from

the interaction between the collaborants. “A collaborant is a resource that participates in a collaboration

and that can reason about and take action on the state of evolution of the products and processes” [44]. The

collaboration environment consists of the necessary resources to allow for communication between

individuals to take place.

17

This research focuses on the development of a collaboration framework, which is “the necessary

and sufficient set of standards-based computing and communication infrastructure, and collaboration

support services used to develop and execute instances of a collaborative environment” [44] that supports

visualization.

2.4.1 Types of Collaborations

2.4.1.1 Asynchronous Collaboration

Jason Wood presented the idea of asynchronous collaboration visualization in which people

interact at different times, in different places…such as when sending email messages or leaving messages

on a bulletin board [59]. This type of collaboration may be more indicative of development environments

and business practices, but is not necessarily the best approach for C2 systems.

2.4.1.2 Synchronous Collaboration

Most C2 systems are manned 24 hours a day, 7 days a week, and have the need for synchronous

collaboration with immediate responses. The immediate response and direct interaction between

collaborants is the big difference that distinguishes asynchronous from synchronous collaboration systems.

2.4.2 Levels of Collaboration

Asynchronous and synchronous collaboration can be achieved at several different levels. This

may range anywhere from the data level to the view level. Data collaboration uses raw data to

communicate information from one place to another, such as, sharing a file over a network. View

collaboration is sharing a visual representation to communicate ideas and information between

collaborants, such as, sharing an external window with another computer. Figure 5 shows the different

levels of collaboration that can occur. An example of data abstraction is the sharing of data objects or

structures. Likewise, the visual abstraction is the sharing of visual objects that compose the view.

18

Data

Levels of Collaboration and Abstraction

Data
Abstraction

Visual
Abstraction View

low high

Figure 5. Levels of Collaboration

Most collaboration systems currently use the data abstraction level to enable collaboration

between users. The primary use of data abstraction is to create message objects that hold some information

about the collaborative components. These messages are passed back and forth amongst the collaborants

and form the basis for collaboration.

2.4.3 Elements of Collaboration

Many elements are required for effective collaboration. Gutwin and Greenberg [21, 22] identified

several mechanisms of collaboration that must be present when working in a shared workspace. They are:

explicit communication, consequential communication, coordination of action, monitoring, and protection.

• Explicit Communication: Verbal and written communications are the cornerstone for sharing

information in a collaborative environment. Within a visual workspace, the workspace and the

artifacts themselves are critical in enabling explicit communication to take place.

• Consequential Communication: In addition to explicit communication, great amounts of

information are transmitted and picked up unintentionally as people go about their activities. The

manipulation of objects from within a collaborative session produces two kinds of information:

consequential communication and feedthrough. “Consequential communication is the visible or

audible signs of interaction with a workspace” [23]. For example, watching someone work

provides clues about their actions. “Feedthrough is the observable effects of someone's actions on

19

the workspace's artifacts” [23]. For example, seeing an object move indicates that someone is

moving it.

• Coordination of Action: To avoid conflicts within a shared environment, participants must take

turns. In addition, some tasks may require a sequence of events to take place in a certain order.

Thus, it is imperative that collaborants can organize their actions within the shared workspace so

conflicts do not arise. This implies that some type of control mechanism must be in place to give

control of the shared workspace to users.

• Monitoring: Almost all other mechanisms for collaboration rely on the ability to monitor and

collect information about others in the workspace. Workspace awareness information, such as

who is in the workspace, where they are working, and what they are doing, is primarily the

information needed to enable collaborants to make progress on tasks and effectively work

together.

• Protection: One obvious potential problem with a shared workspace is the inadvertent altering of

work by another in the workspace. Thus, people must be courteous of others’ work and not

inadvertently destroy someone else’s work. In addition, mechanisms for locking different

elements or regions of the shared workspace with passwords may be necessary to provide

adequate protection to a user’s work.

2.5 Information Visualization

Information visualization is a proven concept used to help in understanding information. This

section discusses the process of understanding and relevant visualization techniques that are useful in

aiding understanding. The framework to be developed should support information visualization.

20

2.5.1 Knowledge Crystallization

Card, MacKinley and Schneiderman [4] present the idea of knowledge crystallization, which is the

process by which we gain understanding of information. It is similar to Boyd’s OODA loop and it assumes

five simple steps. The steps are:

• Information foraging

• Search for schema

• Instantiate schema

• Problem-solve

• Author, decide or act

During any one of these steps, certain tasks are performed to aid in the cognition of that particular step. To

help understand some tasks that may be performed in this process, some techniques employed in

information visualization are discussed.

The first step in the process is to forage for information. The primary reason is to gather enough

data to be able to make some sense of the data. Visualization techniques (e.g., navigation techniques) are

proven in aiding the forage for data. These techniques allow a user to interact with information to gather

bits and pieces of facts that will help solve the task or problem at hand.

Once the data has been gathered, making sense of the information follows. This involves a

process of mapping the information to a meaningful representation (schema) so it makes sense in human

minds. If data does not map well to a particular schema, the search for a more suitable schema should

proceed, thus producing a schema that can abstract the information so it can be managed and processed.

Some techniques that are used to instantiate schemas are: reorder, cluster, classify, average, promote, and

pattern detection.

With the data mapped to a local representation, the process of problem solving can commence.

This is the process of instantiating solutions and comparing the effectiveness of the potential results.

Visualization techniques that are used are: read fact, read comparison, read pattern, manipulate, create and

21

delete. As irrelevant information is deleted, reorganized and compared, solutions to problems are more

easily apparent.

Once the problem-solving phase reduces the number of solutions, the last step is to take action.

The action does not always have to require a decision or action, but may include a report, a briefing or

another type of document that composes information.

This knowledge crystallization is used in all domains, and information visualization techniques

have proven very useful in helping the human cognitive process come to resolution more quickly. Patterns

are more easily seen and information is presented in a way that allows the human to make sense of the info

and see how it fits in context of a problem. Several techniques are discussed to demonstrate the usefulness

of these techniques in knowledge crystallization.

2.5.2 Maps

Almost everyone has used a map to navigate from one place to another. The primary advantage of

maps is that they provide a high density of information in a small space. Distances can be calculated, and

size of cities and political boundaries can be assessed and considered when making decisions. Many times

within the C2 community, political boundaries must be understood and taken into consideration when

deciding on a manner to attack an enemy or diffuse a situation. Maps can provide this type of information

at a glance. Imagine trying to understand a nation’s political boundaries, just by looking at raw latitude and

longitudinal data. The visualization provides an image of the political boundaries around nations and

states, so the user only has to glance at a picture to gain an understanding.

2.5.3 Symbols

Symbols or Glyphs are another important visualization technique that is used within the C2 realm.

“Glyphs are graphical objects or symbols that represent data through visual parameters that are either

spatial, retinal, or temporal” [8]. Symbols abstract information into simple meaningful entities. Some may

argue what “meaningful” truly is, but within the C2 community, certain symbols have evolved to represent

22

information. These glyphs may not be the most intuitive or best-designed symbols, but they do provide an

abstraction (e.g., infantry, artillery) that can be composed to aid understanding.

Within the C2 community, common symbols are composed of three components: an icon, a frame

and a fill. Icons are glyphs that represent units, location or equipment. To illustrate this, Figure 6 provides

an example of two different units. The following symbols and charts are taken from the United State Army

Field Manual 101-5-1 [12].

This figure shows two icons, one being a flag annotated with TOC, and the other being a square

with a dot in the middle. In our culture, the flag has an understood meaning of some type of headquarters

or an important unit. In this case, the flag is annotated with the use of a label (TOC) to indicate that it is a

Tactical Operations Center. The other symbol is an artillery division. The X above the artillery division

indicates its size. The X represents a Brigade; thus, this unit may have many subordinate units within it. It

is arguable how intuitive these symbol are, but these symbols have been used for years and have become

part of the C2 community and are understood within that domain. The use of labels is discussed in the next

section, but it is important to point out that if there were no label associated with the icon, it would be very

difficult to distinguish one icon from another. These icons provide an abstraction to be used on a map that

hides the details from the user. These details could be explored by using a drill-down technique that is

discussed later, to find more information about these units.

TOC

Tactical Operation Center (TOC)

TOCTOC

Tactical Operation Center (TOC)

X

Artillery Division

XX

Artillery Division
Figure 6. C2 Symbols Example

The next component of a common C2 glyph is the frame, which consists of primitive shapes and

symbols that present affiliates. Table 1 shows a representative group of frames that are used within the C2

community. These frames are “role indicators” that show the warfighting function the unit performs either

on the ground, air, or at sea.

23

In-flight

Subsurface

Surface

Enemy
UnitsNeutral

Unknown
Sea/Air

Friendly
Sea/Air

Friendly
Ground
Units

In-flight

Subsurface

Surface

Enemy
UnitsNeutral

Unknown
Sea/Air

Friendly
Sea/Air

Friendly
Ground
Units

Table 1. Unit, Installation, and Site Symbol Frames [12]

The last component of the glyph is the fill, which refers to the area within a frame. The fill is

usually filled in with color, but does not have to be used. Color is discussed in a later section.

2.5.4 Labels

As was mentioned above, labels are a critical element to be used with symbols. In Figure 6 it is

impossible to tell what artillery division this is. To avoid this ambiguity, labels are used to indicate unit

designation. These labels provide additional information about the unit to help paint the bigger picture.

Labels are also needed to point out landmarks and other relevant items on a map. Imagine trying

to look at a map with none of the cities or highways labeled. It would be difficult to find information and

understand it, especially for one unfamiliar with the landscape. To resolve this problem, labels are used to

provide visual cues about location. This allows individuals to understand context more quickly and then

orient themselves to the situation.

2.5.5 Color

Color is a very useful technique when trying to distinguish and group objects. Making common

objects look the same can have important meaning and provide additional abstract information. Examine

24

the use of color to show highway types. On a common street map, principal highways are usually red,

while interstates are blue. This is very helpful when these roads intersect, because it enables one to follow

the roads without getting lost in the intersection.

As mentioned above, the fill of a symbol is usually done with color. Color indicates affiliation.

The C2 community has a standard color representation, shown in Table 2. By using these colors,

additional, but possibly redundant, information is presented. Overall, the use of color is very helpful in

distinguishing one object from another. On a map, coloring the land green and the sea blue makes it easier

to see the distinction of information on the display. Plus, the use of color makes a display much nicer to

look at and easier on the eyes if used appropriately.

Color Affiliation
Hand-Drawn Computer-Generated

Friend, Assumed Friend Blue Cyan
Unknown, pending Yellow Yellow
Neutral Green Green
Enemy, Suspect, Joker, Faker Red Red

Table 2. Color Representation [12]

2.5.6 Interaction

Another key visualization technique is being able to interact with data. It is nice to see the

information in a big picture, but if additional data is needed, there must be ways to obtain the data easily.

Some techniques that allow users to interact with data, such as drill-down, filtering and zoom, are discussed

next.

2.5.6.1 Overview and Detail

Overview and detail allows the user to interact directly with the data to request more detail, while

maintaining a high level view. By so doing, more variables can be shown about the information, which

aids understanding.

25

An important aspect of this technique is the ability to drill down or obtain details-on-demand.

This capability allows users to obtain additional information by displaying more details in different views.

In the C2 community, this enables getting information about units and equipment very easily. Especially

on the logistics side of C2, the commander must understand what each unit is supplied to do. If a mission

were going to take a certain amount of ammunitions, it would be wise to see if that amount of resources is

available. Additionally, the commander may want to know who is the most suited for the task, based on

their current supply and status. Thus, by providing the commander with additional details about a unit, the

best decision can be made.

2.5.6.2 Filtering

Many data points may be overwhelming to any commander. Thus, the ability to mask

unimportant data and focus on relevant information is imperative while trying to forage for data. Thus, by

eliminating extraneous data, more time and attention can be given to the smaller subset of important data.

With fewer things on one’s mind, the cognitive process is achieved more effectively.

2.5.6.3 Zoom

The zoom capability enables users to focus in on specific details of a view by enlarging a section

of the view. This visualization technique allows users the ability to enlarge the view to extract additional

information at a smaller level of granularity. This capability allows the user to zoom in for more detail and

zoom out to access the big picture. This technique helps achieve understanding of information.

2.6 Distributed Systems

Collaborative systems enable multiple clients to share common views or data to accomplish a task.

This, in essence, is a distributed system of clients working together to solve a problem or task. By making

this parallel, it becomes apparent that there are many complexities that come into play to facilitate

collaboration.

26

Peter Deutsch recognized the challenges of distributed systems over that of classical standalone

systems and wrote “The Seven Fallacies of Distributed Computing” [13]. He added, “Essentially everyone,

when they first build a distributed application, makes the following seven assumptions.”

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one administrator

• Transport cost is zero

Some additional assumptions to consider are:

• The network is stable

• Resources are infinite

• The network is homogeneous

“All prove to be false in the long run and all cause big trouble and painful learning

experiences” [13]. Distributed systems must implement mechanisms to handle these issues. An effective

and efficient collaborative framework is no different and must handle these types of concerns. A few

distributed concepts such as performance and latency, failures, concurrency and consistency are briefly

discussed to provide some background information.

2.6.1 Performance and Latency

Clearly accessing resources – data or files – over a network is slower than accessing them locally.

In some cases the difference may be orders of magnitude, which in turn affects the overall performance of

an application. This difference in performance, in a distributed system, becomes an issue due to the

inability to distinguish a failed component from a slow component. Thus, the problem of handling failures

27

improperly is perpetuated. The performance of a network may vary greatly within a short span of time.

This is evident if one has ever surfed the web. Thus, a distributed system must be able to handle a variety

of network conditions. Developers of distributed systems often overlook and even ignore performance and

latency concerns because remote accesses are made to look like local ones. This results in applications that

have communication patterns that are unacceptably slow, or not very robust in a distributed environment.

Instead of ignoring the issues of “remoteness” of component, it must be considered in the

architectural design of the system. This ensures that interfaces for communicating between objects are

designed, resulting in acceptable performance measures.

2.6.2 Failures

Network systems fail in ways stand-alone systems cannot: routers go down, ethernet cables are

pulled out of machines, switches are reset, and key servers can crash. These failures may be short-lived or

may cause long outages. Code must be written that can handle these types of failures. The difficulty with

this is that the errors may be difficult or impossible to detect. The reason for this difficulty is because

distributed systems usually have no centralized entity that can be used to determine success or failure of

actions.

In distributed systems, individual components can fail in ways that leave other components

running, often unaware of their failure. This situation is called partial failure, and is the cause of most of

the problems associated with distributed computing. Total failures are actually easier to deal with because

the system ends up in a known state (i.e., up or down).

2.6.3 Concurrency and Consistency

Partial failures usually cause consistency problems. For illustration, consider the example of a

shared whiteboard application that allows a set of participants to manipulate a shared drawing space. When

one user makes a mark, the update must be propagated to all users in the session. If one recipient’s

computer becomes unreachable for a short time and the update is not processed, the participant’s screen

28

may be in an inconsistent state. This would result in participants being out of sync with the rest of the

workgroup. Additionally, several participants may be manipulating the shared drawing space at the same

time, which causes concurrency problems. Partial failures and consistency are the real showstoppers for

distributed computing. They are difficult to detect and require tremendous overhead to solve.

Early collaboration applications used floor control (e.g. one user interacting at a time) to prevent

concurrency problems [17]. Later models or approaches dispensed with any type of concurrency control,

relying on social protocols and global awareness to prevent conflict; however, according to Munson et

al [39], social protocols and global awareness methods are not acceptable in many situations. Thus, some

type of floor control mechanism is best suited to solve the concurrency problem.

To help solve the problem of concurrency and consistency, transactions can be used. Transactions

ensure that complex operations will reach a “safe” state. That is, the operations either all complete, or none

of them complete. This mechanism can be used to help avoid partial failures in distributed systems, to help

handle concurrency and consistency issues, and to provide robustness and resiliency to network failures.

2.7 Enabling Technologies

Previous research has found the use of Sun Microsystems JavaSpaces™ to be useful in the

development of a collaborative visualization framework [3, 27]. However, this research goes beyond

JavaSpaces™ to look at the applicability of core technologies of Jini™ for collaboration.

2.7.1 Jini™

Jini™ technology was released to the public in early 1999. Mark Stang and Stephen Whinston of

Xor Incorporated summarize Jini™ Technology in their article “Enterprise Computing with Jini™

Technology” [49]. The great power behind Jini™ is its capability to give network devices self-

configuration and self-management capabilities. These capabilities enable network devices to

communicate immediately on a network without any human intervention. Jini™ technology was developed

as a sophisticated platform to build network-aware applications. This technology makes it possible for

29

users to access resources located anywhere on the network. In addition, network resources and devices can

join and leave the network without manual configuration. This technology provides several advantages,

such as reliability, scalability, maintenance, and security, when trying to create a network-aware

application.

Reliability is the measure of how well a device or network operates when there are disturbances.

Processes, services, and machines start and stop and sometimes even crash. Jini™ technology can handle

these types of changes because it was designed to have resources move in and out of a network. The way it

works is similar to the way machines communicate over the Internet. Between two machines there are

many different paths they could take to communicate. So, if a problem occurs with one path, another path

is taken. Similarly, when a server, or resource becomes unavailable on a Jini™ network, the client

automatically goes searching for another server that provides the needed service, or waits for the server to

come back up. This functionality is built into the Jini™ architecture and remains transparent to users.

“A system is scalable if the overhead required to add more functionality is less than the benefit the

functionality provides” [49]. Adding additional Jini™ services to the network provides more choice to

clients on which services they can communicate with. Adding more devices that provide the same service

increases system reliability. Jini™ networks have no central control, which permits the networks to be free

and manage themselves. This allows for services to be added and removed with little to no effort. The

ability to dynamically discover services makes Jini™ networks fluid, meaning they change dynamically

without affecting existing services.

Maintainability and administration are some other key advantages to Jini™ networks. With the

ability to find the network components that make up applications, location of a source is hidden from the

client. Additionally, the network is self-maintaining and does not need manual configurations. Jini™

makes fail-overs much easier to implement. For instance, a back-up server may be running, and when the

primary fails, it changes its IP address and takes over the workload. This is possible because when a Jini™

server fails, a Jini™ client automatically searches for another instance of the service to finish the work.

30

Security is always critically important in any system, especially in the C2 realm. Jini™ software

prevents unknown clients from accessing protected services. Additionally, it can prevent remote clients

from even seeing services that are offered by the network. Jini™ servers maintain and transmit the client

code needed to interface with a particular service. Prior to any code being moved, the Jini™ environment

must satisfy the client’s security policy, which defines the trusted machines and all security parameters.

Jini™ uses a service-based model to enable the sharing of resource across a network. “A service

is a fundamental concept in Jini™ technology and represents an entity that users can access over a

network” [49]. Services can be any entity that is abstracted through software such as printers, storage

devices, and software components. These services advertise their availability and capability through

lookup servers that clients use to discover and access services.

To make services available to clients several steps are followed (reference Figure 7). First, the

service is bound to a Lookup Server. The Service Provider publishes its service interface or proxy code to

the Lookup Service. The Service Provider may publish its service interface to any number of Lookup

Services, thus providing redundancy if any Lookup Server were to fail. Second, the Service Requester

performs a lookup to locate the Lookup Service. Once found, the Service Requestor asks the Lookup

Service for a particular service by using a unique name. If the requested service is registered with the

Lookup Service, it returns the proxy code, which was stored in the Lookup Service. Otherwise, it returns no

match for the requested service. With the proxy code now accessible to the Service Requestor, it now

knows how to communicate with the Service Provider. The last step is simply the communications

between the Service Requestor and the Service Provider via the proxy.

31

Service
Provider

Service
Requestor
Proxy

Service
Requestor
Proxy

Lookup
Service
Lookup
Service

1. Publish 2. Download proxy

3. Communicate
via proxy

Figure 7. Jini™ Service Model [55]

The Jini™ service-based model is simple and provides great flexibility by allowing clients access

to capabilities across a network. To implement this model, Jini™ technology uses five key concepts.

These concepts, as described by W. Keith Edward, author of Core Jini™ [16], are: discovery, lookup,

leasing, remote events, and transactions. These concepts provide the ability for Jini™ to support

spontaneously created, self-healing communities of network services.

2.7.1.1 Discovery

Discovery is the process by which services find and join communities to advertise their

availability. When a Jini™-aware application or service wishes to make itself available to users, it goes

through the process of joining a community. It first must perform a discovery to find the lookup services

and then joins them by using operations on the lookup service references that are returned by the discovery

process. Once the service joins a lookup service, the service become available to use by other services and

applications.

32

2.7.1.2 Lookup

Lookup fulfills the role of a directory service and provides the resources for searching and finding

known services. Thus, it keeps track of all services that have joined a Jini™ community. It also controls

how code is transmitted to clients wishing to use a particular service. The sections of code that are

downloaded to clients are called the proxies and they define the interfaces to the services the client use.

2.7.1.3 Leasing

Leasing is the technique that provides the self-healing characteristics of Jini™. It will ensure that

a community will recover from a failure of a key service. Access is granted to a service to exist on the

lookup server for a fixed period of time. If that service does not attempt to renew its lease, the service will

be dropped from the Jini™ community, thus eliminating the references to stale resources on the network.

2.7.1.4 Remote Events

Remote events are the mechanism used by Jini™ to allow services to notify other services of

changes. Since lookup is a service, it can notify other interested parties of changes made to the available

services.

2.7.1.5 Transactions

Transactions are the mechanism used by Jini™ to ensure that computations that require more than

one service terminate processing in a “safe” state. In other words, the group of commands or computations

must be completely executed together as a group for the result to be considered valid. This provides a way

to “cluster” operations together to give the appearance of all the commands executing as a single command.

Thus, the user can be sure that the sequence of actions completed successfully, or none of them completed,

thus maintaining the system in a safe configuration.

There are three main parties involved in Jini™ transactions: the transaction manager, the

transaction participant, and the transaction client. The transaction manager is just another Jini™ service

33

that implements the two-phase commit protocol [41] when requested. The two-phase commit protocol is a

well-known database protocol that ensures operations either commit or abort. The transaction manager

maintains a list of all participants for each transaction and sends messages to participants telling them to

move to a different stage. Essentially the transaction manager is only in charge of ensuring that the two-

phase protocol is followed.

The second party is the transaction participant. It is essentially a program that performs operations

that are grouped together in a transaction. Participants must implement the TransactionParticpant

interface.

The last party is the transaction client. It is the entity that initiates the entire process. It does not

need to implement any interface. Its responsibilities are to instantiate Transaction objects, and ensure the

transaction either commits or aborts.

2.7.2 JavaSpaces™

JavaSpaces™ is a service built on top of the Jini™ architecture that creates and maintains a

database of Java objects. This mechanism facilitates group communication or collaboration through the

sharing of Java objects.

JavaSpaces™ uses the standard Jini™ lookup to store and retrieve objects. The standard lookup

uses the Entry interface to facilitate the searching for objects. The Jini™ documentation provides the

following information about the Entry interface [55]. The Entry interface is the supertype of all entities

that can be stored in a Jini™ Lookup service. Specific Entry objects implement the Entry interface and

may have any number of methods or constructors. Each field in an Entry object must be a public reference

object type. Each field is serialized separately, so references between two fields of an entry will not be

reconstituted to be shared references, but instead to separate copies of the original object. To illustrate this,

Figure 8 provides a simple example of an Entry object that has two attributes pointing to the same object

prior to serialization. After serialization, the attributes now have two separate copies of the original object.

34

Entry before
Serialization

Entry after
Serialization

Figure 8. Entry Before/After Serialization [16]

Unlike relational databases, neither primary keys nor tables are needed to store or search for

objects. Objects can be located by performing a lookup on names or any set of attributes of the object.

Typical relation databases use the CRUD (create, read, update, and delete) paradigm to operate on data.

Mark Stang, et al [49] showed how JavaSpaces™ uses three operations to map to the CRUD model: write,

read, and take. Write performs the create and update functions, read maps to the read function, and take

combines read and delete functions.

The take operation is used when a user wants to lock an object in the database. This actually

removes the object from the space and makes it unavailable to other users. The take and read operations

block until a matching object is available in the JavaSpace; however, a timeout parameter can be set to

curtail the amount of time the operations wait. If the service dies after taking or locking an object, the

object could be lost. To prevent this, JavaSpaces™ uses the transaction mechanism whenever a take is

performed. Thus, if anything happens to the service, the object will be restored to its original state prior to

the take action.

The use of JavaSpaces™ typically follows the following simple steps. First, applications or

classes use the write method to place objects to the JavaSpace; they also remove them from the JavaSpace

by using the take operation. Upon completion of the processing on the object, the object is written back to

35

the space using the write operation. Applications then use the read operation to access needed objects.

Figure 9 depicts the JavaSpaces™ operations in actions.

Figure 9. JavaSpaces™ Operations [19]

There are additional operations that are defined by the JavaSpaces™ interface, which are:

readIfExists, takeIfExists, and notify. The first two, readIfExists, and takeIfExist, are exactly like their

counterparts read, and take with the following exception: they will return a null if a matching entry does

not exist and blocking in these calls are done only if necessary to wait for transactional states to settle.

The notify operation provides the mechanism for the JavaSpaces™ to notify a listener if an object

matching a template has been written to the space. “The method takes an Entry as a template that will be

matched against future writes to the JavaSpace. If a new Entry is written that matches the template, an

event will be sent to the listener specified in the notify call” [16].

JavaSpaces™ Principles, Patterns and Practice [19] describes some useful properties of

JavaSpaces™ that makes it a good candidate for a collaborative distributed system. These properties are

summarized here:

• Spaces are shared by allowing multiple processes to interact with a JavaSpace at the same

time. The concurrency issues associated with shared access are handled internally by the

36

JavaSpaces™ API, eliminating the need to write extensive concurrency control routines to

handle these issues.

• Spaces are persistent, meaning that objects can be reliably stored in a JavaSpace. If an object

is stored in a JavaSpace, it will remain there indefinitely until it is removed. Leases can be

requested to indicate the duration of storage for the object. When the lease expires, the object

is removed from the JavaSpace.

• Spaces are associative by enabling programmers the capability of locating objects in a

JavaSpace with knowing the name or the location of the object. Objects are found using

template objects that contains desired values/properties to search the JavaSpace. The

JavaSpace matches these templates with objects in the JavaSpace and returns them. This type

of associative lookup gives the programmers great flexibility by enabling them to write

programs without knowledge of names or locations of other components of the application.

• Spaces allow transactions by using the Jini™ transaction service to guarantee that operations

are atomic (that is, either all of the operations are applied, or none of them are applied).

Transactions are essential in detecting and handling partial failure.

• Spaces allow the exchange of executable content. Objects in a JavaSpace are passive data,

meaning they cannot be modified or invoked inside the JavaSpace. However, programmers

can easily take an object from the JavaSpace, create a local copy and modify its public fields,

as well as invoke its methods.

2.8 Related Research

Many approaches for collaboration frameworks have been attempted. Throughout time the

frameworks have become more robust and provide more functionality and better performance.

37

2.8.1 NCSA Habanero

The National Center for Supercomputer Applications (NCSA) developed a collaborative

framework called Habanero [7]. This framework is written in Java and operates by sharing actions or

semantic events to multiple copies of Java applets or applications. These applications are replicated across

clients that are connected to a particular session. Habanero ensures that all clients see the actions in the

same order, which results in all of the applications appearing the same on each client. Programmers are

given the flexibility to define what events are considered to be state changing and thus create actions to be

sent to all clients.

Habanero also provides a general floor control or session controlling object, called an arbitrator.

The arbitrator controls which events can be performed at a given time. The student-teacher arbitrator is a

good example. This arbitrator only allows the privileged person (the teacher) to initiate actions. Thus, all

the students become observers and only see the actions performed by the privileged user. Another example

is the turn-taking arbitrator, which requires events to be initiated in order by each participant. Developers

can also define their own arbitrators. Currently these arbitrators make TCP/IP socket connections to each

client, which does not scale very well when there are a large number of clients.

Habanero also provides a collaborative environment to support the session management process.

This environment allows users to create, join, leave and browse sessions. In addition, Habanero provides a

suite of tools, e.g., Chat, Whiteboard, and others that are used to support collaboration between

individuals [6]. A limitation to Habanero is that it requires applications to be predefined as shared tools

and does not allow dynamic addition of applications [58]. Additionally, it is not very robust in being able

to handle system failures.

2.8.2 DISCIPLE Framework

Ivan Marsic, et al developed a component-based framework centered on the JavaBeans™

architecture [32, 33]. The main characteristic of DISCIPLE (DIstributed System for Collaborative

38

Information Processing and LEarning) is a three-tiered architecture: presentation, application logic, and

storage [58].

The reason for focusing on JavaBeans™ is that JavaBeans™ represents a strong software industry

trend for standardizing software development through components. Components enable the speedy

development of software using third party software components. In addition, JavaBeans™ help maximize

the ability to decouple the communication and group aspects of collaboration from the application

itself [33].

Like Habanero, DISCIPLE is also based on the replicated architecture of groupware. Therefore,

each client runs a copy of the collaboration client and contains a copy of the application that is being used

to collaborate. Thus, each application is kept in synch by the framework passing events to each application

to make them appear to be in the same state [58].

DISCIPLE provides components that manage collaborative functions, such as concurrency control

of simultaneous activities, degree of sharing of the application (coupling), and degree of group awareness

within the environment [58]. Collaboration takes place in sessions, which are virtual rooms that enable

users to work together. In addition, this framework has several tools that can be used to support

collaboration: whiteboard, collaborative mapping, speech signal acquisition and processing, and image

analysis tools. However, this framework does not handle system failures, nor does it provide flexibility to

application developers to customize components in the collaborative framework.

2.8.3 COAST

The COAST (COoperative Application Systems Toolkit) provides developers with an architecture

to support cooperative applications [47]. Like Habanero and DISCIPLE, COAST also uses a replicated

architecture approach. Each application operates on exactly one document; thus, the data is fully replicated

to each client application.

39

Users access the shared document via a session object. “Session objects provide group awareness

and specific coupling of shared document aspects between concurrent users” [47]. The coupling can be

used to implement specific cooperative modes (e.g., private, loose, tight). Users interact with the shared

documents through views (visualizing the document in a windows) and controllers (processing user input

from the window). Thus each view and controller object accesses the shared object through the session

object. This concept is the well-known MVC (Model/View/Controller) [31] programming design pattern.

This pattern decouples the functionality of the model, view, and controller to increase flexibility and reuse.

This approach allows collaborating users to have multiple views of the same underlying data model [20].

COAST explicitly addresses the problems of object sharing, session management, and view

updating. The session manager, transaction manager, replication manager, view, and control objects

perform these functions; however, this design does not support an asynchronous mode of sharing objects.

In addition, the fully replicated approach limits the size of the shareable objects.

2.8.4 ColVis

Sean Butler developed a framework called ColVis (Collaborative Visualization) as a

demonstration of concept to demonstrate the feasibility of JavaSpaces™/Jini™ in a collaborative

environment [3, 27]. The ColVis “framework provides communications management and message support

and well-defined Java class interfaces for integrating visualization components” [27]. This framework does

demonstrate that JavaSpaces™ can be used to share Java objects; however, the implementation is limited

because the Java objects are not truly shared.

The framework uses a message object to pass messages to the JavaSpace, which is then accessed

by each client. By taking this approach the developer must embed code that processes the messages in each

new collaborative application. The framework handles the sending of the messages, but the developer is

required to implement code that will pack and unpack messages to create the desired collaborative action.

40

Another limitation of this framework is the coupling of the communications and the user view and

interactions. They are tied together in a lower level visualization components, and do not lend themselves

well to maintainability and flexibility.

2.9 Background Summary

In summary, the visionary documents provide the background for why information superiority is

so important in today’s military environment. Obtaining information is of no use unless knowledge can be

extracted from it. Collaboration and information visualization are important elements that help information

become knowledge. In the command and control community, this knowledge will influence decisions.

Well-informed decisions will hopefully minimize casualties and maximize military objectives.

Several distributed systems concepts are presented to help motivate the challenges that are

associated with building a collaborative framework. The use of Jini™ and JavaSpaces™ technology help

overcome these challenges by providing developers with mechanisms that internally handle the distributed

concerns. Additionally, these technologies enable the sharing of Java objects throughout a shared

workspace.

41

III. Methodology and Design

This chapter discusses the methodology and design used to address the objectives of this

collaborative research. It describes the success criteria for the research and outlines the architecture used in

the design of the collaborative framework.

As stated in Chapter I, the goals of this research are to create a generic framework that supports:

• Shared interaction – the collaboration between geographically separated users interacting with

data and visual representations to accomplish tasks. The characteristics used to measure this

goal are: shared state, data consistency, communication, coordination of action, monitoring,

and protection.

• Visual sharing – remote users collaborate at a higher level of abstraction than the data through

the sharing of visual objects. The criteria established to measure the effectiveness of this goal

are visual consistency and visual collaboration.

• Remote code access –users access remote data and applications without the need for previous

installation. Dynamic loading is used to measure the effectiveness of the framework in

meeting this goal.

• Easy tool integration – flexibility to easily integrate any Java tool and make it collaborative.

To measure this goal the following criteria are used: generality, automation, and coupling.

• Facilitate software development – the purpose of a framework is to ease the burden of

developers in developing software. The following characteristics are defined to measure the

capability of the framework: scalability, robustness, standard language support, and

flexibility.

42

These overarching goals are used to define and guide decisions made during the framework

development process. The choices made in developing this collaborative framework require the addressing

of complex issues such as: system architecture, distributed system concerns, and global awareness.

3.1 Collaborative Framework

Most collaborative applications today have code that is specifically written to provide the

collaborative functionality desired in the application. This paradigm couples the application code to the

collaborative framework, thus forcing every new application to implement similar collaborative constructs.

This approach seems to be effective, but creates excessive burdens on application developers to add

collaborative features to each new application.

This research uses a generic approach to try and build a framework that would take any Java™

application and make it collaborative in nature. This generic approach decouples the application from the

collaborative software, thus eliminating the need for the application to implement distributed system

concepts and making it easier for developers to create new applications.

3.1.1 Criteria

A review of related work [5, 18, 20, 22, 23, 32, 59] has revealed certain characteristics that are

desirable in a collaborative framework. These criteria encompass characteristics for a good software

framework, as well as characteristics needed to effectively collaborate with geographically separated

individuals.

• Generality: By producing a general solution the application of the framework can benefit more

people and be used across many domains. This characteristic allows the use of a single framework

to develop domain-independent collaborative applications, providing flexibility and reuse. Using

a single framework to support many different domains eliminates the need to learn a new system

to create a collaborative system in other domains.

43

• Automation: Automation is the spontaneous support of making an application collaborative with

minimal intervention from the developer. The level of automation can be measured by the

“developer’s effort [required] to achieve multi-user behavior with respect to a single-user

case” [46].

• Shared State: All clients in the collaborative environment must remain synchronized. A common

approach to maintain synchronization is to share a common state model. This synchronized state

may be maintained in any number of ways; however, since the goal is to allow for interaction with

both data and visual representations, a mechanism for sharing of objects is the desired approach to

be integrated into the framework. This approach allows for both data and visualization to remain

synchronized because each client is using the same objects.

• Consistency: The framework must support both internal data consistency as well as display

consistency. In other words, the framework must ensure the state of the shared objects and their

visualization remains the same. This is essential for effective collaboration to take place.

• Scalability: The approach should be scalable with respect to the number of users and the size of

the shared applications that are to be used. Increasing requirements should be met by components

that are flexible and able to handle a greater load (e.g. by adding more servers). The upper bound

is not constrained, however, the focus of this framework is to facilitate the sharing of ideas to aid

in decision-making. Too many people involved in the collaboration makes the ability to come to

any consensus difficult.

• Robustness: Along with scalability, the framework should be able to handle system failures. This

can be best described as self-healing. When servers go, does the system crash, or is the framework

able to account for the change and continue the collaboration activities?

• Communication: A collaborative environment must be able to support both explicit and

consequential communications. Communication is the main focus of a collaboration framework,

because it enables individuals to work together to accomplish a task. All actions must be handled

44

and processed by the collaborative framework in a synchronized fashion. That is, each event of

action must be processed in an ordered manner according to when the action took place.

• Dynamic Loading: Not all users may have every instance or correct version of an application, thus

creating an inconsistency in the collaborative environment. To prevent this problem, the

framework should support the ability to dynamically load classes from a common repository.

• Coupling: Coupling is the measure of how much the application is joined to the collaborative

framework. The desired approach is to create a framework that is decoupled as much as possible

from the applications. This creates a desired separation and independence between the framework

and the shared applications.

• Standard Language Support: The framework should avoid the use of additional support from

languages (i.e. specialty compilers, interpreters). The framework should not be bound to a

particular language or platform, thus enabling independent modification.

• Visual Collaboration: One of the goals of the framework is to enable users to collaborate at

higher level of abstraction from that of sharing data. To measure this requirement, we ask the

question: how well does the framework support sharing of visual entities?

• Flexibility: Does the framework provide the capability for programmers to devise their own

extensions and to customize system behavior? The framework should enable developers to

customize components easily with minimal side effects.

• Coordination of Action: To avoid conflicts within a shared environment, participants must take

turns. In addition, some tasks may require a sequence of events to take place in a certain order.

Thus, it is imperative that collaborants can organize their actions within the shared workspace so

conflicts do not arise.

• Monitoring: Almost all other mechanisms for collaboration rely on the ability to monitor and

collect information about others in the workspace. Workspace or group awareness information,

45

such as who is in the workspace, where they are working, and what they are doing, is the primary

information needed to enable collaborants to make progress on tasks and effectively work

together.

• Protection: One obvious potential problem with a shared workspace is the inadvertent altering of

work by another in the workspace. Thus, people must be courteous of others’ work and not

inadvertently destroy someone else’s work. In addition, mechanisms for locking different

elements or regions of the shared workspace with passwords may be necessary to provide

adequate protection to a user’s work.

3.1.2 Visual Collaboration

Collaboration happens at many different levels. Section 2.4.2 discusses collaboration at the data,

data abstraction, view abstraction and view levels. An important objective of this collaborative framework

is to support collaboration at a more abstract level than that of the data level. Visual sharing or view

abstraction is a desired feature within the framework.

Figure 10 shows three levels of collaboration that can be used to establish communication between

two or more clients: data, interactive events and visual. Data collaboration is the sharing of information via

a file or raw data. The ever-increasing popularity and use of XML is making this approach more feasible

and preferable to application developers. Interactive event sharing is the propagation of event messages to

all users. This is the most commonly used method today. This may be due to the minimal bandwidth

required to send event messages to clients participating in a collaborative group. Visual collaboration is the

sharing of visual objects within the collaborative environment. Visual collaboration is the approach taken

in this research due to its appeal to minimize the complexity of the framework and enhance flexibility.

46

Visualization Collaboration
(Visual objects)

Interactive EventsModel Model

DataData Data

Figure 10. Visual Collaboration Abstraction Diagram

3.2 System Architecture/Design

In this research, the Collaborative Visualization Environment (COVE) framework is designed to

provide a separation of semantics of applications from semantics of the collaboration and distributed

computing. This enables applications to collaborate having no knowledge of the underlying collaborative

mechanisms. This approach is similar to the DISCIPLE [33] approach, with a dramatic shift in the

collaborative mechanisms. DISCIPLE uses a replicated architecture using an event propagation approach

while COVE uses a centralized shared object approach. The primary advantage of using the shared object

approach is gained by eliminating the need for extensive concurrency and consistency control mechanisms.

3.2.1 Architecture Choices

The two most common architectures used in collaborative frameworks are: centralized and

replicated. These architectures have subtle difference that can impact the run-time performance,

functionality, and scalability of resulting collaborative applications.

In the replicated architecture, [refer to Figure 11] exact copies or replicas of the
application being shared must be installed and maintained on each host. The application
on each host handles the user interaction locally. Any changes made to the application
state are broadcast to all other replicas to maintain the consistency of the data and the
user views. The major disadvantages of replicated architecture are the difficulties in
keeping the data and user views consistent and in synchronization. Since the applications

47

are managed locally, two users may interact with the application at the same time instant
in different ways, thus resulting in inconsistency. Complex synchronization techniques
are needed to maintain harmony among the replicas and all user views. [29]

Application

(host 1)

Screen

(host 1)

Application

(host 2)

Screen

(host 2)

Application

(host 3)

Screen

(host 3)

Application

(host n)

Screen

(host n)

…………

…………

Synchronization signals

Figure 11. Replication Architecture [29]

The strength of the replicated architecture lies in its user responsiveness and robustness. The user

interacts with local copies of objects thus increasing the responsiveness and performance of the

applications. Robustness is increased because a single point of failure does not exist.

The centralized architecture as described by [5], “executes a single instance of the collaborative

application and maintains one copy of the shared data, allowing the single application instance to process

multi-Input/Output (I/O) and support collaborative functions.” The main advantage of the centralized

architecture is the absence of synchronization, as clients communicated via sequential I/O with a single

copy of the shared data. This approach also simplifies other replication problems (e.g. concurrency

duplication tasks). The primary disadvantage to the centralized architecture is the increase response lag.

Since all the objects are shared over a network, latency and bandwidth limitations affect the performance of

the system. Figure 12 shows how the application is run on a single application with other hosts accessing

the single application.

48

Application

(host 1)

Screen

(host 1)

Screen

(host 2)

Screen

(host 3)

Screen

(host n)
…………

Figure 12. Centralized Architecture [29]

The design chosen for this research is a combination of the two architectures to take advantage of

the strengths of each. The centralized architecture reduces synchronization issues while the replication

architecture provides quicker response time. Thus, the resulting architecture is a centralized repository of

shared visual objects with a local replicated application on each host (refer to Figure 13). Each host gets

access to a centralized shared object set providing consistency and synchronization controls. Each local

host also maintains a local copy of each collaborative application to increase responsiveness and

performance.

Application

(host 1)

Screen

(host 1)

Application

(host 2)

Screen

(host 2)

Application

(host 3)

Screen

(host 3)

Application

(host n)

Screen

(host n)

…………

…………

Central Object
Repository

(JavaSpaces™)

Figure 13. COVE Framework Architecture

49

3.2.2 Session Service Architecture

To create a framework that decouples the collaborative framework from the application the

concept of a service is used. A service is an entity that provides a set of well-defined operations that can be

accessed anywhere on the network. A service is comprised of a service provider and a service proxy. The

service provider publishes the service proxy to the network so clients can have access to the capability it

facilitates. Clients fetch the service proxy from the network and then execute it on their local Java Virtual

Machine to interface with the service provider.

The COVE framework uses this concept by establishing a Session Service running on top of the

Jini™ network. Jini™ technology [55] is an innovative and usable technology for building reliable, fault-

tolerant distributed applications. Jini™ provides an infrastructure that allows clients to find services

independent of both party’s location. Figure 14 illustrates how the Session Service sit on top of the Jini™

network and how client applications interact with the Session Service via the Service Interface or proxy.

Clients interact with other clients through a generic set of operations supplied in the Session Service. This

simple design decouples the collaborative elements of the framework from the client application by

keeping the collaborative elements strictly in the service. Clients with access to the service interface need

never know (nor care) about underlying network classes or interfaces that support collaboration.

COVE Session Service

Jini™ Network

Service Interface

Client Application

Service Interface

Client Application

JavaSpaces™

Figure 14. COVE Layered Architecture

The Session Service also has the responsibility to provide the sole interface to the shared object

store. Once again, this simplifies the client application by interacting with the session service interface.

50

Additionally, this design choice enables clients to dynamically load the proxy or interface from the network

to gain access to the service. This is very powerful in that it allows clients anywhere on the network to use

a service without any explicit driver or software installation.

3.2.3 Object Sharing Via JavaSpaces™

In this research a shared object space establishes the centralized architecture that is used as the

collaboration mechanism. As discussed by Ceglar and Calder [5], “object sharing reduces the need for

structural redundancy required to support the view of multiple roles of data, and reduces the number of

instances of objects.” The object sharing service provides mechanisms for keeping the shared object space

in a consistent state, thus enabling participants to monitor and plan actions to accomplish tasks. This

approach reduces the number of dependencies that must be maintained in order to maintain consistency.

The shared object approach provides robustness by allowing a global access point to share an

object anywhere across a network. Clients can exchange executable content by passing instantiated objects

from one client to another.

Redundancy can be accomplished by running multiple synchronized JavaSpace services, such that

when one JavaSpace goes down the other one takes over. This capability can avoid a potential single point

of failure.

The shared object space utilizes JavaSpaces™ technology as the storage and sharing mechanism

in the collaborative environment. JavaSpaces™ provides concurrency and consistency controls for the

shared objects, thus eliminating the need for additional complex synchronization and concurrency control

algorithms in the framework.

3.2.3.1 Concurrency Control

COVE’s concurrency control model is based on a first come, first served basis. This type of floor

control enables collaborants to opportunistically aid each other in accomplishing tasks by coordinating

actions in a real-time fashion. When users desire to manipulate an application in the shared environment,

51

they first make a change to their local copy of the shared object. The framework takes the original object

from the shared space and replaces it with the local changed object. The JavaSpace then notifies each

client that a change has occurred, which then reads the new object from the space and updates its screen.

The synchronization process only locks the shared object for the duration required to replace it with the

changed one, thus collaborants cannot lock an object indefinitely.

To design this concurrency control, objects that are being manipulated are removed from the space

and become inaccessible to other users. Users desiring to manipulate an object will wait until the object

becomes available in the space. The removal of the object from the shared repository gives exclusive use

to the participant who gets access to the object first, hence first come first serve. Upon completion of

making a change to the object it is then written back to the space and propagated to all clients participating

in a session to maintain consistency. The use of the centralized and replicated architecture is evident in the

concurrency control mechanisms. The object repository receives and stores the changed object, but each

workstation receives a copy of that object to display in their local workspaces for the benefit of user

responsiveness. The workspace is discussed in greater detail in Section 3.2.4.2.

3.2.3.2 Consistency Control

Consistency is another difficulty facing designers of a collaborative framework. As discussed in

Section 2.6.3, this issue can be one of the most complex issues to solve. In this research the shared object

approach is used to maintain consistency in the collaborative environment. By maintaining a repository of

shared objects, consistency can be maintained, because only one set of objects are used for collaboration.

When objects are changed, the changes are reflected in the shared repository. Thus, any participant in the

collaborative environment will have to access this repository to get the current state of the objects.

3.2.3.3 JavaBeans™

The shared object repository must store objects and make them available to clients across a

network. To develop a framework that supports every type of application and programming construct

52

without any constraints would be an arduous task if not impossible. Thus to limit the set of applications,

the JavaBeans™ [52] component architecture is used. “A Java Bean is a reusable software component that

can be manipulated visually in a builder tool” [52]. However, this is a very vague definition. For this

research a bean is considered an instantiated group of Java classes that follow the JavaBeans™

specification. The restriction to JavaBeans™ ensures that each application implements the Serializable

interface, thus enabling the storage and movement of objects across a network. The Serializable interface

is used to identify objects that can be converted into a stream of bytes then later be put back together into

an identical object.

The JavaBeans™ component architecture is a platform-neutral architecture for the Java

application environment. It is the ideal choice for developing network-aware solutions for heterogeneous

hardware and operating system environments for the following reasons:

• Common development standard: JavaBeans™ follow common standard design patterns. These

patterns define a standard way beans are coded and enable the mechanism of introspection.

• Serialization/Persistence: Serialization and bean persistence are major considerations for the

sharing of objects. These mechanisms enable objects to be stored for indefinite periods of time

and to be sent to other clients across a network. This capability is critical to the approach taken

in this research.

• Introspection: JavaBeans™ conform to a well-defined design pattern, which is used to obtain

information about the bean. The Java Reflection API is used to look inside the bean and extract

information about its composition. This feature is used to ensure an application meets the

constraints that will work in the COVE framework.

• Event Model: The JavaBeans™ architecture uses a delegation-based event model. An event is

something of importance that happens at a specific point in time (e.g. user clicks a mouse

button). The event model is used to identify changes to application beans within the

53

collaborative environment. This mechanism is critical in signaling the framework to send

distributed events that are used to maintain consistency.

3.2.3.4 Session Manager

The most important shared object that is stored in the object repository is the SessionManager.

Session management is a key element of the framework that keeps track of what sessions and users are in

the collaborative environment. The SessionManager maintains the current state of the environment and is

responsible to ensure that the state of all users is kept consistent, regardless of when a user enters a session.

3.2.4 Replicated Client Architecture

At the end of Section 3.2.1, the design solution introduces a combined approach of using a

centralized and replication architecture. The centralized architecture of the framework provides the

backbone to facilitate collaboration through the uses of a service and a shared repository of objects. How

the user interacts with the backbone is just as important.

The user interface uses a replicated architecture to display the applications in the collaborative

framework. This approach is useful in providing greater responsiveness to users. Each client uses a local

desktop to display the current state of the session manager. Workspaces show the current state of the

session by displaying applications that are being used. The state of these sessions and applications are

maintained by the object store; however, each client has a local copy of the application that is updated

when changes are made to the shared object. Each client maintains a copy of the global state and notifies

the object store of changes that are made to its local copies. This notification is important, because it forms

the basis for the collaborative mechanism used in the framework.

The desktop and workspace must support the concept of group awareness in order to enable

participants to monitor and provide assistance to each other. Ceglar and Calder [5] stated, “Global

awareness facilitates multi-user coordination within a collaborative application by providing users with

information regarding other collaborators, allowing individual users to maintain a global perspective of the

54

collaboration.” The implementation of awareness enables coordination of actions between users, reducing

conflicts and duplication of work.

According to Koch et al [30] there are several common mechanisms used to provide awareness

information. Status and events are the most important mechanisms for awareness information. Status is

the information collected about the collaborative participants within the collaborative environment. The

events provide the real-time workspace awareness. The session manager provides status to all users in the

collaborative environment, while the framework processes the events to produce collaborative real-time

workspace awareness.

3.2.4.1 Desktop

The Desktop is the user interface used to represent the current state of the session manager, as well

as provide a set of operations on which to interface with the collaborative environment. It enables users to

discover what sessions (workgroups) exist, find out who is currently in a session and to join one of them.

As shown in Figure 15 a simple tree-like design can be used to show hierarchy and containment within the

collaborative environment. The design of the Desktop provides a global picture of all the users and

available sessions within the environment. Thus, users are enabled to form workgroups spontaneously, in

sessions, to collaborate and accomplish joint tasks.

As a user joins a session, all the objects that are in that session are shared and become available to

that user. Thus, users are allowed to manipulate a group of shared objects to accomplish some desired task

or operation. Figure 15 provides a snapshot view of the desktop tool.

The functions or operations that can be performed from the Desktop are: login to system, logout of

system, create a session, remove a session, join a session, leave a session, and drop a bean. This provides

users the basic functionality needed to create spontaneous collaborative sessions in which work can be

accomplished.

55

Communication Node

Global User

Session

User within a Session

User description

Bean BrowserLogin

Logout

Create

Remove

Join

Leave

Empty Session

Figure 15. COVE Desktop User Interface

3.2.4.2 Workspace

The Workspace is a local container, which holds all the applications (JavaBeans™) that are part of

a session. When a user joins a session, a workspace for that session is automatically launched and the

current state of the session is displayed. Users can then add and remove beans from the workspace by

loading them or closing them. The workspace provides a semi-WYSIWIS (What You See Is What I See)

look and feel because all the application will act the same, but the locations of the applications are

independent of each other. Figure 16 illustrates how two separate workspaces have the same applications,

but the locations are maintained independent of each other.

The Workspace encapsulates each application (bean) in a JInternalFrame. By so doing, it

decouples the beans location attributes from those of the global ones. This enables the bean’s screen

location to remain a local parameter instead of a shared attribute. Additionally, the encapsulation provides

56

a generic way to capture events to know when an object changes state. This is the trigger that synchronizes

the clients with the shared repository.

Figure 16. COVE Workspace User Interface

3.2.4.2.1 Bean Loading

One of the goals of the framework is to decouple the collaborative framework from the

applications and allow code to be accessed remotely. With this in mind, there needs to be a way to link the

application to the framework and enable the framework to access code remotely. To accomplish this, the

concept of dropping a bean into a workspace is used.

Bean loading provides the primary mechanism to connect the framework and application together

by having a bean loaded into a workspace. Each bean is encapsulated by a BeanData object, which is an

extension of a JInternalFrame, to interface with the collaborative framework. The BeanData object

performs two main functions. First, it stores the beans and second it is used to capture events to

synchronize them in the collaborative framework.

Bean loading takes advantage of the ability of the Jini™ network service to load JavaBeans™

remotely. The bean loader uses introspection to gather information about the beans and then displays the

available beans in the Bean Browser, refer to Figure 17. When a bean is selected and then dropped into the

57

workspace, the framework uses the network services to locate the class file for the bean to instantiate an

object. This capability provides great robustness to the design and allows for clients to access software not

previously installed.

Drop Bean

Jar File

Beans within
a Jar File

Jar Loader

Help

Figure 17. Bean Browser

3.2.4.2.2 Bean Synchronization

When a bean is dropped into a workspace, a glass pane is placed over the bean to be able to detect

events as they occur. These events are used to trigger the object synchronization mechanism within the

framework. Synchronization is maintained as objects are taken from the shared repository, manipulated,

and written back to the shared space. When objects are written back to the repository, each client in the

session reads the new object and updates its view. This four-step process of taking, manipulating, writing,

then reading provides the mechanism for collaboration of beans in the workspace.

58

IV. Implementation

This chapter presents the implementation details used to create the collaborative visualization

framework to meet the criteria and design defined in Chapter 3. Issues surrounding the implementation are

discussed where applicable.

4.1 Session Service Implementation

The service design takes a client-server approach by providing a central place where collaborative

operations can be processed. This central approach provides a common interface that each client uses to

interact within the collaborative framework. The system is implemented using Jini™ services to provide

the necessary remote connectivity needed to support collaboration between remote users. This technology

provides the desired flexibility and ease of use desired in a framework. It also satisfies several other

characteristics, defined in Section 3.1.1, such as: shared state, dynamic loading, scalability, robustness, and

standard language support.

The design centers on the concept of a service provider and a service proxy providing a set of

functionality to users across a network. The power of this concept is that it enables an application to

download an interface or proxy from anywhere on the network to use the particular service. For example,

Figure 14 illustrates how the application uses an interface to interact with the session service.

To make this concept a reality, an interface named ISessionService is created that defines what the

session service offers. The ISessionService provides a set of methods used to enable collaboration to take

place. The actual implementation for the service is found in the SessionServiceProxy class. The methods

the service offers are shown in Figure 18.

As discussed in Section 3.2.2, the design must consolidate all the interaction with the shared

object repository into a single service. The SessionServiceProxy creates the interface to the JavaSpace, by

consolidating most JavaSpaces™ operations to one class. This simplifies other components in the

59

framework, because they need not know anything about JavaSpaces™. These components simply use the

ISessionService interface to interact with the JavaSpace.

ISessionService and SessionServiceProxy classes define the session service, while the

SessionServiceWrapper class implements the service provider. The service provider binds the service

proxy, in this case the SessionServiceProxy, to the Jini™ lookup server so it can be available to clients.

Additionally, it maintains the instance of the SessionServiceProxy object that processes the requests. The

service provider remains running indefinitely as a means to keep the service proxy available to users. This

is necessary due to the use of the Jini™ leasing feature.

Leases make services available for a certain period. When that time expires, the service provider

must renew the lease or the service is dropped from the lookup server. This mechanism adds robustness to

the network by enabling self-healing to take place. When a service crashes, the client using that service

will eventually time-out and begins looking for another service to communicate with.

Figure 18. Session Service UML Diagram

60

4.2 Collaborative Framework Components

4.2.1 SessionManager Class

The SessionManager is used to maintain global state in the collaborative environment. Thus, to

ensure that only one SessionManager object is instantiated within the environment and provide a global

access point to the object, the singleton pattern is used.

The singleton pattern [20] is a creational design pattern used to ensure that a class has only one

instance and can be accessed through a well-known access point. This pattern is very useful in cases where

one and only one instance is desired, and global access is needed. The example of a print manager

illustrates the need for this pattern. There may be many printers on a system, but there should be one and

only one print manager and it must be globally accessible. This is due to the fact that the print manager

keeps track of all printers on the network and provides information to clients concerning those printers. If

there were multiple print managers, information may be lost or incomplete due to two entities trying to

maintain control of the printers. To make this possible the class is made responsible for keeping track of its

sole instance. The class can then ensure that no other instance can be created (by intercepting requests to

create new objects). Additionally, it provides a global access point to the instance through a static method

called getInstance().

Figure 19 shows a UML diagram of the SessionManager class. It has an attribute called

m_instance that is used to keep track of the sole instance of the class. The visibility of the constructor is

private, so no outside object can instantiate the SessionManager class. The well-known access point,

getInstance() method, creates the sole instance of the SessionManager and returns a pointer to that instance.

The getInstance() method is static, so it can be accessed without creating an instance of the

SessionManager.

The implementation of this pattern is not only convenient, but also essential in ensuring that only

one SessionManager object exists. Since the collaborative framework depends on the SessionManager to

maintain the state of the collaborative environment, one can image what would happen if multiple

61

SessionManager objects were in the environment. Collaboration would be impossible, because every client

could have a different view of the environment.

Figure 19. SessionManager Class Diagram

For the SessionManager to maintain state of the collaborative environment, two attributes are

used: m_sessions and m_users. The m_sessions attribute maintains a list of all the sessions and the m_users

attribute maintains a list of all the users logged into the collaborative environment. Both of these attributes

use the Java Map interface to decouple the actual data structure from the code. This concept is known as

programming to an interface, thus allowing the underlying data structure to change without affecting any

other code that uses that interface. The Java HashMap is the data structure used for both attributes due to

its simplicity and quick access time.

An important implementation decision is made on how to store this information. At first, the

m_session attribute stored session objects and the m_users attribute stored user objects. This made logical

sense from a single client perspective, but caused inefficiencies in the object sharing approach. Updates

required the serialization and deserialization of many unnecessary objects from the JavaSpace. So to solve

the problem an object relation approach was used. The m_sessions and m_users collections now only store

identification tags or keys and not the actual session or user object. This still provides the objects with the

62

needed information but removes the aggregation constraint that caused the unnecessary serializations. This

approach now enables the framework to directly search the JavaSpace for the desired objects and serialize

only the objects needing to be updated.

4.2.2 Desktop Class

The desktop is broken in two main functional pieces. First, the desktop provides global

awareness, by displaying information about users, and sessions currently in the collaborative environment.

The information is stored in the SessionManager class used throughout the framework to maintain global

state and provide the model needed for awareness. The SessionManager is the underlying data model used

in the Desktop monitor display, shown in Figure 20. This view provides global awareness to collaborants

and enables the spontaneous creation of groups to accomplish tasks.

Figure 20. Desktop Monitor Display

Second, the desktop provides a set of operations with which to interface with the collaborative

environment. The Desktop class uses the already defined and implemented Session Service to perform all

these operations (e.g., Login, Logout, Create a session, Join a session). To use the Session Service the

Desktop is responsible for finding the service and downloading the proxy code so it can use it. To do this,

the Desktop first uses Jini’s discovery mechanism to locate a lookup server; then it uses the lookup()

method from the Jini™ ServiceRegistrar class to find the desired service. This method,

lookup(ServiceTemplate tmpl), takes a service template object as input and returns the service object that

matches the template or null if there is none. If there is none, the Session Service has most likely not been

started or has crashed. Once the desired service is found, the Desktop interfaces with the service via its

63

proxy. Since the proxy is just another instantiation of an object, the Desktop keeps a reference to it, in this

case the SessionServiceProxy. This reference is passed to any other class that needs access to the service.

Figure 21 illustrates this concept of how the Desktop uses the Session Service to perform the

collaborative operations. The Graphical User Interface (GUI), in this case the Desktop, gains access to the

SessionServiceProxy via the process described above. Then the GUI makes requests through method calls

to the SessionServiceProxy. The proxy forwards those request to the service, which then processes them.

The Session Service interfaces with the JavaSpace to manipulate and change objects based on the nature of

the request. For example, if a user logs into the collaboration session, the Session Service will update the

SessionManager with a new user ID and create a new User object and store it in the JavaSpace. If the

method call has a return value, the service returns a value on completion of the method.

Session
Manager

Session1

User1

User3
User1

User2Session2

User2

User1

User3
WSC

(Session2) Bean1

Bean2

Session
Manager

Session1

User1

User3
User1

User2Session2

User2

User1

User3
WSC

(Session2) Bean1

Bean2

GUI
Session
Service
Proxy

Session
Service

JavaSpace

write read take

Return

Request

Figure 21. COVE - GUI to Service Relationship Diagram

64

The Session Service performs all these operations, but menus and buttons on the desktop graphical

user interface are still needed to tie the desired functionality to the graphical user interface. The desired

functionality (e.g., Login, Logout, Create session, Remove session, Join session, Leave session) enables

collaborants to interface with the framework. To avoid placing large amounts of code in the Desktop class,

yet provide the menus and buttons with the information needed to handle requests, the command pattern is

used.

The command pattern [20] is an object behavioral pattern that enables applications to achieve

complete decoupling between the invoker and the receiver. An invoker is an object that requests an

operation, and a receiver is an object that receives the request to execute a certain operation. The key to

this pattern is a Command interface, which declares an interface for executing operations. This interface

includes an abstract execute() method that must be defined by concrete classes. These concrete Command

classes specify a receiver-action pair by storing the receiver as an instance variable and provide different

implementations of the execute() method to invoke the request.

Figure 22 provides an example of how the command pattern is used in the framework. Consider

the case where a user is logging into the system. The Desktop class is the invoker because it calls the

execute() method of the command interface through the actionPerformed() method of the inner class,

SessionHandle. SessionHandle is a simple helper class that handles all events generated in the Desktop

graphical user interface. The concrete command, LoginCmd, implements the execute() method of the

command interface. The LoginCmd has the knowledge to call the appropriate receiver object’s operation to

perform the desired task or operations. In this case, the execute() method makes a call to the login()

method of the ISessionService object. Here the concrete command acts as an adapter between the invoker

(Desktop) and the receiver (ISessionService) objects.

By using this pattern, the menus and buttons need not know how to handle a request or operation,

but instead, invoke the abstract command to execute the desired operation. The SessionHandle inner class

actually instantiates the correct concrete command that is to be run, then calls the execute() method of the

new command object. This simple design pattern enables the Desktop class to offload the specific

65

implementations of the commands it uses to concrete command classes. The concrete command classes

have the necessary information needed to carry out the desired operation.

Figure 22. Desktop Command Pattern Usage

All concrete commands inherit from an abstract class called Command. This permits the buttons

and menus of the Desktop to invoke all requests by using the Command interface; not knowing exactly

which command will be executed at design time. Figure 23 shows the concrete commands used in the

COVE framework. Each one of the concrete commands uses the ISessionService interface as the receiver

of the desired action or request.

The use of this pattern decouples the buttons and menus of the Desktop from the ISessionService

and allows for a more robust implementation. New commands are easy to add, because existing classes do

not need to be modified. This concept encapsulates all the functionality required for a certain command

and provides a central control mechanism to execute the requested action.

66

Figure 23. Command Pattern Class Diagram

4.2.3 Session Class

A session is a virtual meeting place where collaborants meet to work together. The Session class

provides the needed data model to facilitate collaboration with members of a session. Its main purpose is

the keep track of the users involved in a collaborative session and to interface with the WorkspaceContents

to keep track of the beans within a session. The Session has the responsibility of giving the bean a unique

identification number. This unique identification is needed to distinguish between two different

instantiations of the same bean.

4.2.4 Workspace

The Workspace is a local container, which holds all the applications (beans) that are part of a

session. When a user joins a session, a workspace for that session is automatically launched and the current

state of the session is displayed. When a user closes the Workspace windows the user is then logged out of

that session.

67

4.2.5 WorkspaceContents Class

The WorkspaceContents class is a very simple class that holds a session name and a list of bean

identification numbers. When a new bean is dropped into the workspace the Session gives the new bean a

BeanID and then adds the BeanID to the WorkspaceContents list. This BeanID is used to uniquely identify

a bean in the shared space.

4.2.6 UserAccount Class

The UserAccount class defines a collaborant within the system. Information such as name, and

logon time are all stored in the UserAccount objects. This information is needed to maintain control over

the collaborative environment and provide awareness information. Users logon when they desire to

participate and logoff the system when they are finished. The UserAccount class also plays an important

role in keeping track of the state of the collaborant in the environment, by maintaining a list of sessions in

which they are participating. When the user logs out of the system, the user is automatically dropped from

every session he was participating in. In this way, consistency is maintained in the system.

4.3 Event Processing

Any collaborative system relies on the framework or application to pass information back and

forth to enable communication between users. This is done primarily through events. The remote event

model, discussed in Section 4.3.2, is used because it handles the distributed concerns of synchronization,

consistency, unreliability, and unordered processing. JavaSpaces™ implements the remote event model

and makes it a good choice for implementation. Prior to discussing the event model and the listeners that

support that model, it is important to discuss how synchronization is achieved in the framework.

4.3.1 Synchronization Mechanism

To make the collaboration work between clients, the clients must be synchronized. The design

indicates a four-step process of taking or locking the object, manipulating it, writing it to the global space,

and then reading the new object on each client. JavaSpaces™ technology provides a built-in mechanism to

68

perform each of these functions. The following operations map exactly to this synchronization model: take,

write, and read.

The take operation removes the object from the space, thus, locking it for exclusive use to the

client who took it. Once exclusive access to the object is gained, the object can be manipulated. Upon

completion of some action by the user, the object is then written back to the space as a new object by the

write operation. When an object is written to the JavaSpace, registered listeners recognize a change and

notify all the clients of the update. This function is performed by the notify operation. Upon notification

all the participants in a session read the object using the read operation.

4.3.2 Distributed/Remote Event Model

To understand how the notify method operates it is important to have a firm understanding of

events and event models. “Events are the mechanism used for asynchronous communication in Jini™

systems, and as such are crucial to the effective use of the technology” [45]. The distributed event model

provides the necessary protocol to allow for clients to communicate with one another, thus enabling a

collaborative framework to be built.

To help understand the distributed event model, it is important to first understand how the

delegation-based event model works and why it is insufficient for distributed systems. In the delegation-

based event model there is no central dispatcher of events; every component that generates events

dispatches its own events to registered listeners as they occur. The Event Listener first registers with the

Event Source as a listener for a particular event. Once the event occurs the Event Source fires an Event

object to the Event Listener (see Figure 24). The Event Listener then processes the Event object to produce

the desired effect from the event.

69

Event
Listener

Event
Source

1. Event Listener registers as a
listener

2. Event Source fires event by
sending an event object

3. Event Listener
processes the event

Figure 24. Delegation-base Event Model [56]

Simon Roberts and Jon Byous [45] presented a number of reasons why the existing delegation-

based event model is insufficient. These reasons are summarized here:

• First the pre-existing listener interfaces (ActionListener and others) do not throw a

RemoteException from their handler methods. Since Jini™ technology is tied together using

Java Remote Invocation (RMI) this exception must be thrown. But, Java™ prohibits

overriding or implementing a method such that the new method throws exception not declared

in the original method.

• Second, the Event classes, such as ActionEvent and others, contain references to the source

objects that may be used in processing the event. This reference causes a problem, due to the

fact that in some cases the event source object is non-serializable. This prevents the use of the

source object as an argument to a remote method call.

• Third, the delegation model assumes that delivery of events is synchronous, reliable, ordered,

and quick. This assumption works in a single Java virtual machine, but is not guaranteed in a

distributed environment. Messages may be lost, duplicated, reordered or corrupt, thus a new

event methodology must be used to overcome these problems.

• Lastly, the registration of a listener wishing to receive an event is handled only by explicit

calls, such as addWindowEventListener and removeWindowEventListener. In a distributed

environment the temporary failure of the listener will cause deregistration of the event,

70

without the explicit call to the removeWindowEventListener. Thus, this approach is

insufficient for a distributed environment.

Jini™ addresses these difficulties in the distributed event model. First, Jini™ introduces a single

“universal” event listener: the RemoteEventListener interface. This is a remote interface, indicating that

Remote Method Invocation (RMI) is used to call the notify(RemoteEvent) method that the interface

defines. This method then notifies the listener about an event.

The second and third problems described above are handled by the elegant design of the

RemoteEvent object. The Jini™ RemoteEvent object is defined with only four fields (source, eventID,

seqNum and handback). The first field is a handle on the source of the event and is generally a remote

reference. The eventID is an identifier for the event that gives the handler method a convenient mechanism

for determining the reason the event has been delivered. The seqNum is a sequence number that is used to

give some indication if an event is delivered in the correct order. The distributed model then uses this

information to ensure that the listeners get all the messages or events in the correct order. The fourth and

final field, the handback, or registration, object is an optional parameter.

The final problem that was posed with the delegation model is how to abandon event registration

when a listener fails. This is handled by leasing. Leasing is a core part of the Jini™ programming model.

It provides the mechanism for controlling garbage collection at the API-level. In other words, establishing

a lease for an event registration provides a means for a timeout to that registration. If the leaseholder

(usually the event listener) keeps renewing the lease at suitable intervals, then the event source will

maintain the registration; however, if the lease is allowed to expire or is cancelled explicitly by the

leaseholder, then the event source will recognize that a problem has occurred and will de-register the event

listener automatically. Thus, this solution overcomes the inability of the delegations to detect failures and

abandon event registrations.

The distributed event model uses four steps to register event listeners with event sources. Figure

25 depicts the registration steps and remote event processing. The first step is for the registrant to register

71

the remote event listener with the event source. The event source or generator then returns an

EventRegistration object to the registrant that is then sent to the remote event listener. This makes the

connections necessary for the event generator or source to send a RemoteEvent to the remote event listener.

This model is the basis for processing changes made in the collaborative distributed environment.

Registrant
(Event

Registerer)

Event
Source

Remote
Event

Listener

1. Registrant registers the remote event
listener with the event generator

2. Event generator returns an event
registration for the remote event listener
to the registrant

3. Registrant returns the event
registration to the remote event listener

4. Event generator
fires a remote event
to the listener to
indicate the kind of
event occurred

Registrant
(Event

Registerer)

Event
Source

Remote
Event

Listener

1. Registrant registers the remote event
listener with the event generator

2. Event generator returns an event
registration for the remote event listener
to the registrant

3. Registrant returns the event
registration to the remote event listener

4. Event generator
fires a remote event
to the listener to
indicate the kind of
event occurred

Figure 25. Jini™ Remote Event Model [56]

The distribute event model is the basis of the notify operation. That is, that a registrant registers an

event listener with an event generator. In this case, the event source is the JavaSpace. The event registrant

is the class that registers the remote listener. The remote event listener receives notification when a change

is made to an object. The registrant calls the notify method on the JavaSpace with two main parameters:

the Entry and the listener. The Entry object is the template that is used to match objects against future

writes to the space and the listener is the object that receives the remote event sent by the event source.

The JavaSpace then notifies the remote event listener when an object that matches the template is written to

the space.

To facilitate collaboration there are three main listeners that are used to handle events within the

framework: SessionManagerListener, WorkspaceContentsListener, and BeanListener. Each of these

listeners is discussed in greater detail below.

72

4.3.3 SessionManager Listener

The SessionManagerListener is registered to the shared space by the Desktop to listen to changes

to the SessionManager object. Its sole purpose is to process changes that are made to the SessionManager.

The listener must implement the Jini RemoteEventListener interface and extend the RMI

UnicastRemoteObject. The RemoteEventListener interface is used to indicate to the framework that the

notify() method is implemented. As part of the remote event model, the remote listener notify() method is

called when an object is written to the shared space that matches the template. Thus, the notify() method

must be implemented in the listener class or an error will occur. Figure 26 shows that the notify() method is

the only implemented method of the SessionManagerListener. In this instance, the notify() method simply

reads the new SessionManager class from the JavaSpace and notifies the Desktop to update its monitor

display. The Monitor, MonitorTree, and MonitorTreeModel classes take the information stored in the

SessionManager and display it as a JTree, as shown in Figure 20.

Figure 26. SessionManagerListener UML Diagram

The listener must also implement the RMI UnicastRemoteObject because the event processing is

done via Java’s Remote Method Invocation (RMI). Thus, this interface must be implemented to allow for

the notify() method to be called remotely. The UnicastRemoteObject class adds the needed functionality to

enable the listener to communicate across a network to other clients. This implementation decision

requires that all listeners be compiled using Java’s RMI compiler (rmic). The output of this compiler is a

73

stub and a skeleton bytecode file that must be placed in the root directory of the running Hypertext Transfer

Protocol (HTTP) server. The reason for the specific location of the stub and skeleton files is due to the fact

that the lookup server looks for these files in that location. If it cannot find them, then the framework will

cease to work because the notify methods will never be run, thus never allowing the collaboration

mechanism to operate. For further information concerning RMI see Appendix B.

4.3.4 Workspace Contents Listener

The WorkspaceContentsListener is registered to the shared space by the Workspace class and

listens for changes made to the WorkspaceContents objects. For each WorkspaceContents there is a unique

listener associated to it. Thus, the appropriate listener is sent a remote event when changes to the

WorkspaceContents object are written to the JavaSpace. The notify method must be implemented as

discussed above (Figure 27 shows the notify method as the only method the listener implements).

This notify() method simply calls the Workspace to rebuild itself and redisplay its contents. The

Workspace uses the WorkspaceContents list to keep its collection of beans up-to-date. Each bean is

contained in a BeanData object, which is just a JInternalFrame object. The rebuild process iterates

through the WorkspaceContents list and ensures that the Workspace has all beans in its workspace. If it

does not, the Workspace loads the bean and adds it to the workspace. If a bean is not in the list and the

Workspace has it instantiated, then the Workspace removes the bean from the workspace. Once everything

is up-to-date in the workspace, the redisplay method is called. This method simply repaints all the

components in the workspace.

It is important to note that the Workspace is never written to the shared space, but remains local on

each client. The BeanData object, however, is decomposed and written to the space. The actual bean that

is instantiated is shared through the JavaSpace. The bean is written to the space and then read by clients

participating in that session and added to their local workspace. The BeanListener class is discussed in

Section 4.3.6.

74

Figure 27. Workspace Components UML Diagram

4.3.5 Glass Pane

To be able to capture events, a glass pane is used to intercept all user events (mouse and keyboard

events). Once events are captured, the synchronization mechanism in the framework is notified. The

Java™ tutorial provides this insight: “The glass pane is useful when you want to be able to catch events or

paint over an area that already contains one or more components. For example, you can deactivate mouse

events for a multi-component region by having the glass pane intercept the events” [50]. Figure 28 shows

how the glass pane is set at the topmost Z-order to cover the bean’s graphical user interface and intercept

all user events, without occluding the underlying Java™ components.

As each bean is dropped into the Workspace, a glass pane is added to the JInternalFrame that

encapsulates it. This keeps each bean separate, enabling events to be intercepted only when a user is

interfacing with the bean.

75

x

y
z

x

y
z

Figure 28. Glass Pane Diagram [50]

4.3.6 Bean Listener

Figure 27 shows a relationship between the BeanListener and the BeanData classes. When a bean

is added to the collaborative environment the bean is encapsulated in a BeanData object and stored out in

the space via the BeanEntry object. The BeanData class registers the listener with the shared space to

listen for changes to the bean. The user’s actions with the beans are captured by the glass pane and then

passed to the underlying bean component that should receive the events. The bean processes the events and

then the resulting bean is written to the space. Just as before, the notify() method of the BeanListener is

then called to process the changed object.

The notify() method of the BeanListener reads the new bean from the space and updates the

workspace with the new bean. After the update takes place, the redisplay method is called to reflect the

change in the workspace.

4.4 Remote Code Access

The capability to expand the framework is an important element of this design. To enable

expansion, the framework was designed to decouple the applications from the collaboration elements.

Thus, to add capability is as simple as adding a bean to the library.

Adding beans is as simple as placing files in the correct location on the server. The dynamic

loading mechanism uses a simple hypertext transfer protocol (http) server that stores the class files needed

in the serialization process. When an object is passed in or out of a remote method call or is passed to the

76

JavaSpace, the object is serialized. Only member data within that object is written to the byte stream, not

the actual code that implements the object. Thus, the class file must be located upon deserialization of the

object.

“When the sender of an object serializes that object for transmission to another Java Virtual

Machine (JVM), it annotates the serialized stream of bytes with information called the codebase” [15]. The

codebase is the mechanism for remote class loading to find the new classes. It contains information telling

the receiver where the implementation of the object can be found, thus enabling the remote virtual machine

to deserialize that object. Further information about codebase can be found in Keith Edwards’ book “Core

Jini, Second edition” [15].

The framework uses this codebase concept to expand the local classpath. The codebase is set, via

a property to the server’s Java Virtual Machine, that contains the http Universal Resource Locator (URL)

that indicates the location of the codebase, for example: -Djava.rmi.server.codebase=

"http://129.92.20.80:4220/”. The capability enables the framework to dynamically load bean code from a

central location, thus making the solution more robust.

4.5 Transactions – Solutions to Consistency and Partial Failures

The most challenging aspect of a distributed system is the difficulty of detecting and dealing with

partial failures. These partial failures create inconsistencies in the distributed system. To help prevent

these inconsistencies, the notion of a transaction is used.

Transactions keep the objects in the shared space in a consistent state. Either they get changed or

they do not. Nothing in between can happen. So if something crashes when trying to change an object the

state of the shared space will remain intact because every operation performed by the SessionServiceProxy

is done through transactions.

Transactions are implemented in every method of the SessionServiceProxy. Each method in the

JavaSpaces™ interface has a transaction parameter that can be used. The session service uses this

77

parameter to group several operations together to maintain consistency in the global space. A simple

example will illustrate how this works.

Consider a user trying to log on to the system. The login command is issued from the Desktop

class to the SessionServiceProxy via the concrete command LoginCmd. The SessionServiceProxy is

responsible to ensure the JavaSpace remains in a “safe” state, so it uses a transaction. The code in Figure

29 creates a Transaction variable called txn. It uses the helper classes of the TransactionFactory to create a

transaction. The variable m_mgr is a handle to the transaction manager and is passed into the create

method of the TransactionFactory so it can manage the transaction

1. try
2. {
3. trc = TransactionFactory.create(m_mgr, 300000);
4. }
5. catch (Exception e)
6. {
7. System.err.println("Could not create transaction " + e);
8. }
9. Transaction txn = trc.transaction;

1. try
2. {
3. trc = TransactionFactory.create(m_mgr, 300000);
4. }
5. catch (Exception e)
6. {
7. System.err.println("Could not create transaction " + e);
8. }
9. Transaction txn = trc.transaction;

Figure 29. Transaction Creation Code Example

The transaction now may be used to group like commands together. In the case of a user logging

into a system, we want to make sure the user gets added to the system properly (the code for this is shown

in Figure 30). First the SessionManager must be taken from the space under a transaction (line 5). After it

is removed from the shared space, it can be manipulated. In this case, line 9 adds a user, and line 10

updates the session manager on the local machine. Finally, after all the manipulations are complete, the

SessionManager is written back to the space under the same transaction to become available to all users,

(line 12).

If at any time an error occurs, the catch block (lines 15-18) catches the exception and aborts the

transaction. If all goes well, the transaction commits (line 19) and the object is written to the JavaSpace.

78

sessionManager = (SessionManagerEntry) m_space.take(sessionManTemp, txn, long.MAX_VALUE);

1. try
2. {
3. try
4. {
5.
6. if (sessionManager != null)
7. {
8. // Add the user to the sessionManager
9. sessionManager.m_sessionManager.addUser(userAccount);
10. SessionManager.setInstance((SessionManager)sessionManager.m_sessionManager);
11. // Write the SessionManager back to the space
12. m_space.write(sessionManager, txn, Lease.FOREVER);
13. }
14. } // End try (1st)
15. catch (Exception e)
16. {
17. txn.abort();
18. }
19. txn.commit();
20. } // End try (2nd)
21. catch (Exception e)
22. {
23. System.err.println("Transaction commit failed");
24. ...
25. }

sessionManager = (SessionManagerEntry) m_space.take(sessionManTemp, txn, long.MAX_VALUE);

1. try
2. {
3. try
4. {
5.
6. if (sessionManager != null)
7. {
8. // Add the user to the sessionManager
9. sessionManager.m_sessionManager.addUser(userAccount);
10. SessionManager.setInstance((SessionManager)sessionManager.m_sessionManager);
11. // Write the SessionManager back to the space
12. m_space.write(sessionManager, txn, Lease.FOREVER);
13. }
14. } // End try (1st)
15. catch (Exception e)
16. {
17. txn.abort();
18. }
19. txn.commit();
20. } // End try (2nd)
21. catch (Exception e)
22. {
23. System.err.println("Transaction commit failed");
24. ...
25. }

1. try
2. {
3. try
4. {
5.
6. if (sessionManager != null)
7. {
8. // Add the user to the sessionManager
9. sessionManager.m_sessionManager.addUser(userAccount);
10. SessionManager.setInstance((SessionManager)sessionManager.m_sessionManager);
11. // Write the SessionManager back to the space
12. m_space.write(sessionManager, txn, Lease.FOREVER);
13. }
14. } // End try (1st)
15. catch (Exception e)
16. {
17. txn.abort();
18. }
19. txn.commit();
20. } // End try (2nd)
21. catch (Exception e)
22. {
23. System.err.println("Transaction commit failed");
24. ...
25. }

Figure 30. Login Transaction Code Example

79

V. Results

A comparison of COVE to other frameworks is performed to evaluate the effectiveness of the

developed framework. The criteria described in Section 3.1.1 provide the objective categories on which to

compare and contrast the different frameworks. This chapter examines the research results and analyzes

them with respect to the established criteria.

5.1 Comparative Analysis

This section evaluates each of the described frameworks (COVE, DISCIPLE, COAST, Habanero,

and ColVis) with respect to the established requirements listed in Section 3.1.1. A subjective analysis is

performed on each framework to measure how well it meets the criteria. When a framework meets that

requirement, it is assessed as a strength or weakness to approximate the degree in which the requirement is

met. The purpose of the comparison is to see to what degree the new framework meets the described goals

and to compare it to other existing frameworks.

5.1.1 Criteria Satisfaction

Generality is the ability of a framework to be used across many different domains. Each

framework under consideration provides a backbone that can support any domain. The solution for

generality is implemented differently for each framework. The COVE and DISCIPLE frameworks rely on

JavaBeans™ applications to support any domain. Habanero takes any Java application and adds code to it

to make it collaborative. The COAST framework provides a generic set of components that are used to

construct domain-specific applications. The ColVis framework relies on a set of visualization applications

that interface with components in the collaborative framework to facilitate generality.

Automation is the spontaneous support of making an application collaborative with minimal

intervention from the developer. COVE enables existing beans to be dropped into a framework without

any modification. DISCIPLE does a similar thing, but dropping “unaware beans”, beans that do not have

80

any DISCIPLE component extensions, into a workspace causes the framework to crash. This may be due

to the version of DISCIPLE that was used in the evaluation. Habanero has an external automated process

that converts Java applications to collaborative applications. All of these frameworks require very little

effort on the part of the developer to create multi-user applications and are considered to be strengths of the

frameworks. COAST supports automation by providing a robust set of components, but still requires

extensive developer interaction to build a collaborative application from the ground up. The ColVis

framework provides a set of interfaces and classes that are used to create multi-user applications. This

approach still requires extensive code changes in the toolkits, and effort on the part of the developer to

create new distributed applications.

Shared state and consistency fit naturally together, because they both affect the ability of the

framework to effectively support collaboration. These criteria are strengths for each of the frameworks due

to their ability to keep shared resources in the same state. Shared state and consistency are maintained in

different ways, but each framework effectively implements the criteria.

Scalability is the ability of the framework to expand to handle the load of additional users. This

criterion is considered to be a strength for the COVE, COAST, and ColVis frameworks due to their ability

to add additional resources to expand their capability to handle a higher load. COVE allows for additional

services and shared repositories to be added, while COAST adds additional mediators to expand their

capability. The ColVis framework could be modified to add additional JavaSpaces™ to support a higher

load. The other two frameworks provide average support for this criterion. Habanero arbitrators use

TCP/IP sockets to connect to each client, which do not scale well due to overhead. DISCIPLE provides

only one server that may get overloaded and become a bottleneck when numerous clients are passing

events.

Robustness is a measure of how well a system handles system failures. The COVE framework

provides the most robust solutions for meeting this criterion through the use of Jini™ services. It takes

advantage of the self-healing properties of Jini™ by enabling clients to look for alternate services at

runtime when a component fails. It allows for redundant services and multiple central object repositories to

81

be running simultaneously to provide backup when system failures occur. The COAST and ColVis

framework provide average support for this criterion. COAST provides mediators that store persistent

objects; thus, when these mediators fail, clients may retry to access these objects when the mediator

becomes available. ColVis uses a similar persistent storage method through the use of JavaSpaces™.

When a client crashes, the current state of a session can be reacquired through reading the event history

from the JavaSpace. Both of these approaches still require user action to reacquire the current state of the

collaborative environment. Habanero uses an arbitrator to examine each action to ensure that it is legal,

thus protecting the framework from actions that may cause failures. However, it does not provide

redundancy or persistent storage for state information, thus creating a limitation in the framework. A

weakness in the DISCIPLE framework is the lack of attention given to this criterion.

Communication is the ability to transfer explicit and implicit information. Each framework

supports explicit communication through the passing and manipulation of entities in the collaborative

environment. However, none of them fully address the issues associated with implicit information.

Dynamic loading is the ability to access a common application repository and download the

current version of code to execute. The COVE and DISCIPLE frameworks provide a robust solution to this

criterion. COVE uses a bean repository and Remote Method Invocation (RMI) technology to access

remote class files, thus sending needed code to clients. The DISCIPLE framework uses a resource server to

accomplish a similar task. The resource server disseminates needed code to clients involved in a

collaborative session. COAST supports dynamic loading at a very limited level. When applications need

data, COAST mediators dynamically load data but do not load actual classes. The Habanero and ColVis

framework do not support this capability.

Coupling is the measure of how much the application is joined to the collaborative framework.

The goals were to make the framework stand apart from the application and to ease the burden of the

developers in developing applications. The COVE and DISCIPLE frameworks do this through the use of

adapters that capture events. COVE uses a glass pane that is placed over every bean that is dropped into a

workspace to capture events and make the connection between the framework and the applications.

82

DISCIPLE uses adapters that are generated at runtime for each “unaware bean” that connects the

framework to the application. These approaches greatly ease the burden of developers, as they need not

worry about the collaborative elements of the framework; rather they need only to create beans that have a

desired functionality and drop them into the framework. COAST, Habanero, and ColVis provide

components that are extended or used in the application to provide the collaborative elements. This

approach is the most common approach taken in collaborative frameworks. It enables developers to create

applications from the ground up using the set of collaborative components to link the application to the

framework.

Frameworks should support a standard language and not rely on additional support from languages

(i.e. specialty compilers, interpreters). All the frameworks evaluated use standard languages. COVE,

DISCIPLE, Habanero, and ColVis all use standard supported functions from Java. COAST uses Visual

Works Smalltalk, which is a platform-independent environment, to provide standard language support.

This is a strength for each framework with the exception of COVE. COVE uses the remote method

invocation compiler (rmic) that creates an additional constraint in the framework.

Visual collaboration is the framework’s ability to support communication at a higher level than

that of the data level. This is considered a strength for the COVE and COAST frameworks due to their

support of visual abstractions. COVE uses the visual object to collaborate and COAST supports shared

models that represent the views. The other frameworks all collaborate via event passing and do not really

support the criterion.

Flexibility enables developers to customize components of the framework easily with minimal

side effects. COAST, Habanero and ColVis support some type of modular component approach to enable

customization of the framework. COAST is built using a set of modifiable components. The side effects

caused by modifying a component are difficult to assess, since the software was not obtained for

evaluation. Habanero uses an arbitrator that can be customized by the application developer to have the

desired functionality, but other components in the framework are tightly coupled; thus, changes would

result in side effects. The ColVis framework provides a toolkit that can be customized and changed to meet

83

the needs of the users, but changes to the components of the framework would cause substantial side effects

in the developed tools in the toolkit. The COVE and DISCIPLE frameworks have a limited capability to

customize framework components. These frameworks use JavaBeans™ to provide great application

flexibility to the developers. Modifying the behavior of the framework, however, introduces side effects

due to the interrelationships between the framework packages.

Coordination of action is the “floor control” mechanism used to ensure that collaborants take

turns. Each framework meets this criterion, but COAST and Habanero provide more robust solutions by

supplying several models that change the behavior of control. COAST provides a set of session objects

that implement different collaboration modes, such as loosely- and tightly-coupled sessions. Habanero

provides several different arbitrators that use different collaboration modes (e.g., turn-taking and student-

teacher). This allows the developer the ability to customize the behavior of the coordination of action to

ensure the needs of the users are met. The other frameworks take a first-come/first-serve approach by

sequentially ordering all actions in the framework. A common server processes requests sequentially as the

clients initiate them. These frameworks are effective in providing “floor control” mechanisms, but they

lack the ability to facilitate other modes.

Monitoring is the ability of the framework to collect and display information about the

collaborants’ actions. A strength of the DISCIPLE and Habanero frameworks is their extensive set of tools

used to display users’ actions and provide user awareness to collaborants. They both use a session manager

view to display global information about the environment, but also include tools such as shared pointers

and radar views to provide additional insight to what users are doing. The COVE and COAST frameworks

primarily provide global session management views to enable users to see what is going on. This is

effective but limited because additional context is lost about where other people are working. The ColVis

framework provides a session view and a message window, but lacks a global view. This creates a problem

when a user wants to find out what sessions are available to join.

Protection provides safeguards on the work of users so information is not inadvertently or

purposefully destroyed. This characteristic may seem contrary to the nature of collaboration, but is

84

important to enable individual work to be accomplished. The DISCIPLE, COAST and Habanero

frameworks support this concept to a certain extent. DISCIPLE has the concept of private workspaces that

are restricted to their owners. This allows users to work in their own space for a time and then make the

session collaborative. COAST and Habanero provide floor control modes that can restrict the access to

work within a session. For example, in a student-teacher mode, the teacher is the only one able to initiate

actions. This prohibits students from changing the material being presented. The COVE and ColVis

frameworks provide limited support to this concept. COVE provides some basic security mechanisms to

prohibit unauthorized clients from getting access to applications in the framework. ColVis provides

unshared workspaces, but they cannot become shared. Additionally, ColVis provides a moderator that can

mute a participant so they are unable to contribute to the collaboration. This criterion is not a strength of

any of the frameworks evaluated.

5.1.2 Summary of Analysis

Table 3 summarizes the analysis and identifies the strengths and weaknesses given to the

frameworks. The blank spaces in the table indicate that the particular criterion was met to some extent, but

was not considered to be a strength nor a weakness of the framework. This table clearly shows that none of

the existing frameworks have strengths in every criterion used for evaluation. The reason for this is that

each framework centers on a certain set of characteristics and other areas are left underdeveloped.

Protection and flexibility are some of those underdeveloped areas for all frameworks.

There is no conclusive evidence that COVE or any of the listed frameworks is better than another.

Each framework maintains a certain focus on a particular set of capabilities. For example, COVE and

DISCIPLE focus on dynamic loading as a key element to their design, while COAST and Habanero

provide better solutions to coordination of action criteria. Therefore, to determine which framework is

desired in building a collaborative application, it is imperative to examine the functionality and

characteristics desired, and then choose appropriately.

85

 C
O

V
E

 D
IS

C
IP

LE

 C
O

A
ST

 H
ab

an
er

o

 C
ol

V
is

Generic S S S S S
Automation S S S W
Shared State S S S S S
Consistency S S S S S
Scalability S S S
Robustness S W W
Communication
Dynamic Loading S S W W W
Coupling S S
Standard Language
Support S S S S

Visual Collaboration S S
Flexibility W W
Coordination of Action S S
Monitoring S S W
Protection W W W W

Table 3. Frameworks Comparison Analysis Table

5.2 COVE Framework Benefits

The COVE framework uses a robust service mechanism to provide the collaborative functionality

of session management. Jini™ technology provides this robustness with mechanisms to publish services

that are scalable, reliable, and simple.

The framework is implemented in the Java programming language which provides great flexibility

and platform independence. Due to the fact that all Java code is compiled into bytecode, then run on a Java

Virtual Machine, all software written in Java becomes independent of the operating system and hardware

architecture on which it runs. This provides programming flexibility to run any program or design a

framework that will work on any platform. Thus, the framework’s compiled code can be run on many

different platforms that have JVM installed.

The shared object approach reduces the number of objects that are maintained by storing them in a

central location in the collaborative environment. Complex synchronization and concurrency controls are

avoided to help maintain consistency throughout the collaborative environment. JavaSpaces™ is a

86

technology that makes this all possible. In essence it hides the concurrency control and synchronization

from the framework by implementing them in the JavaSpaces™ API.

The network and collaboration aspects of the framework are decoupled from the application. Any

bean can be loaded and used in the framework. This capability enables developers to focus their attention

on developing applications and not worry about the collaborative concerns.

Visualization techniques are supported through the use of shared objects, thus any technique can

be employed within this framework. The only constraint to the visualization techniques used is the

limitation the application imposes. Thus, techniques such as zooming, and filtering, can be used effectively

within the framework.

5.3 Serialization Problem with JavaBeans™

During the implementation an assumption was made with regards to the serializable nature of

JavaBeans™. Swing components are built upon the JavaBeans™ architecture. Therefore, they are beans

and have the characteristics of JavaBeans™. So the assumption was made that any bean could be serialized

to the JavaSpaces™, and then reconstituted in the same state.

The assumption that any bean is by definition serializable was tested and failed. The reason for

the failure was a lack of understanding of the serializable mechanisms of JavaBeans™. The JavaBeans™

API documentation states, “as part of JavaBeans™ 1.0 we support the Java object serialization mechanism

which provides an automatic way of storing out and restoring the internal state of a collection of Java

objects” [52]. This mechanism is used to facilitate the goal of persistent storage of a bean. “However a

bean should not normally store away pointers to external beans (either peers or a parent container) but

should rather expect these connections to be rebuilt by higher-level software” [52]. This last statement

creates the problem and requires a work around to have the beans share state in the JavaSpace.

To solve the problem, a constraint on the construction of bean applications is imposed. The

constraint levied on each bean is to implement the readObject and writeObject methods. The writeObject

87

method is responsible for writing the state of the object for its particular class so that the corresponding

readObject method can restore it. The readObject method is most critical, because it restores the

connections to other external beans (i.e. reestablishing listeners). The trick to solving the problem is that

the Java Virtual machine automatically checks to see if either method is declared and makes the appropriate

call. This ensures that the integrity of the class is maintained and the serialization protocol can continue.

This solution is effective but reduces the overall flexibility and generality of the framework.

88

VI. Conclusions and Future Work

The previous chapters describe the design and implementation of the Collaborative Visualization

Environment (COVE) framework, and provide a comparative analysis to existing frameworks. This

chapter summarizes the results from the previous chapters and suggests some potential areas for future

work to enhance the COVE framework.

6.1 Conclusion

The goals of this research were to create a generic framework that supports shared interaction,

visual sharing, remote code access, and easy tool integration.

• Shared interaction – the collaboration between geographically separated users interacting with

data and visual representations to accomplish tasks.

• Visual sharing – remote users collaborate at a higher level of abstraction than the data through

the sharing of visual objects.

• Remote code access –users access remote data and applications without the need for previous

installation.

• Easy tool integration – flexibility to easily integrate any Java tool and make it collaborative.

• Facilitate software development – the purpose of a framework is to ease the burden of

developers in developing software

These goals were met through the use of a centralized object repository (JavaSpaces™), Jini™ services,

and JavaBeans™ technology. By meeting these goals, the collaborative visualization environment (COVE)

framework provides a simple and effective means for rapid development of collaborative visualization

applications.

89

The COVE framework provides several advantages to developers of collaborative applications. It

is a generic framework for synchronous collaboration of users with heterogeneous computing platforms.

The framework enables shared interaction between geographically separated users through the interaction

of visual objects. Object sharing is made possible through the integration of JavaSpaces™ into the

framework. It facilitates the storage and retrieval of any type of serializable object with relative ease and

efficiency. JavaSpaces™ also maintains consistency and concurrency through the use of this common

object store. All collaborants access this shared repository to gain access to the current state of a

collaborative session.

Remote code access enables applications to be run on remote machines without the need of

previous installations. This capability is achieved through the use of Jini™ technology and Remote

Method Invocation (RMI). Jini™ provides a mechanism for services to be available for use from anywhere

on the network through a lookup server. This enables clients to access service interface code remotely.

RMI is another key enabler for remote code access through its extension of the classpath, called the

codebase. This extension enables clients to download remote code from a specified location to use locally

on their machines. This capability is used in the bean repository by placing all bean class files in the

codebase location to enable any client access to the code. These capabilities add great flexibility and

support to the framework by enabling clients to gain access to needed software through dynamic loading.

Another advantage of this framework is the simplicity with which beans can be integrated and

made collaborative. The framework is designed to completely decouple collaborative elements from the

applications. This separation allows developers to concentrate their efforts on building JavaBeans™

applications. To integrate the new application into the framework, the developer need only place the new

bean in the bean repository and then load it in the collaborative environment.

Due to problems with beans serialization, the achieved flexibility of the framework was less than

desirable. It was assumed that any bean could be serialized; however this turned out to not be true in all

cases. To get around this problem, the readObject and writeObject methods had to be used to reconnect

objects (e.g., listeners, etc.), thus forcing the bean designer to consider serialization during development.

90

Sun Microsystems, Inc. recently released a new version of Swing that changes the persistence mechanism

for JavaBeans™ from general binary serialization to a schema using XML. This approach is intended to

establish a standard for design and address the long-term persistence problems for JavaBeans™, thus

allowing developers to overcome the serialization limitations.

An established set of criteria was used to measure how well the goals were met. The criteria were

based on fifteen characteristics, derived from previous work, that are desired in a collaborative

visualization framework. The COVE framework had nine strengths and two weaknesses and satisfied all

the goals to some degree. Of the frameworks compared, COVE provided the most strengths and is the

most suitable framework to use for the established criteria.

6.2 Future Work

There are two main areas where future work can be completed to improve the framework. The

first is to enhance the framework to support additional collaborative capabilities (i.e. component

customization, protection consideration, etc.). The second is to research new ways to add visualization

tools in the framework to provide users with greater awareness within the collaborative environment.

6.2.1 Enhancements

6.2.1.1 Customizable Components

The design of the system dictates certain behaviors of the system, such as allowing every member

of a session equal access. This situation may be unsuitable if tighter controls are needed. For example, in

the teacher-student mode, the teacher must have complete control of all actions; otherwise students may

hinder the learning by changing the state of the environment prematurely. Thus, to increase the flexibility

of the framework, this type of functionality should be consolidated into a single customizable component.

This also applies for other elements of the framework that may need to be customized by the application

developer. This allows developers the ability change the behavior of a component to meet the needs of

their organizations without affecting the other elements of the framework.

91

6.2.1.2 Protection Mechanisms

One obvious potential problem with a shared workspace is the inadvertent altering of work by

another in the workspace. The framework should support mechanisms for locking different elements or

regions of the shared workspace for private use. This would enable users that are solving a problem a

reserved space where they can manipulate objects prior to sharing them with all members of the session.

6.2.1.3 Session Recording and Playback

Another feature that could enhance the session management is the ability to keep a record of all

user actions and generate a session history. This capability could be used to produce playbacks of a

collaborative session to provide information on how a decision or consensus was reached.

6.2.1.4 Complex Bean Integration

To evaluate the performance of the framework, the desired approach was to use a complex bean,

such as mission planning or whiteboard applications. Due to the time constraints, only simple beans were

used to demonstrate the functionality of the framework. With this limitation identified, a valuable future

effort would be to integrate more complex beans to evaluate the framework’s ability to scale to more

complex applications. Along with the evaluation, a bandwidth analysis should be performed to determine

the amount of data being passed over the network.

6.2.1.5 Passing of Object Differences

Based on the design of the framework, every time a bean is changed, it must be serialized over the

network. With complex beans, this could get very time and bandwidth intensive. A future effort could

examine the feasibility of passing object differences from the shared object space to the clients. This would

reduce the potential bottleneck of having large amounts of data being sent over the network. One possible

solution is the use of XML. The new persistence mechanism for JavaBeans™ in Java Swing version 1.4

uses XML to store the current state of the beans. This new mechanism could be used to send changes, thus

updating the beans based on the differences in the XML data. This solution would greatly reduce the

92

amount of data transferred across the network by limiting network traffic to changes to the bean instead of

the entire bean.

6.2.2 Addition Visual Awareness Capabilities

Awareness facilitates multi-user coordination by providing hints to what and where people are

working in a shared environment. Several visualization techniques, such as TelePointers and Radar

views [28], have been shown to improve users cohesiveness and effectiveness.

6.2.2.1 TelePointers

TelePointers provide a mechanism for each user to track the mouse pointer of other users within a

collaborative session. Each user can assign a label and a color to their pointer. Mouse movement from

each participant can be viewed in a shared application window and viewed by all participants in a session.

6.2.2.2 Radar Views

The concept of overview and detail [4] is very useful in providing global awareness to participants

in a collaborative session. Radar views, described by Gutwin, et al [21,24], use overview and detail to

display information about collaborants interaction on a single screen (Figure 31). The overview shows the

entire workspace in miniature, and the objects as they move and change within that workspace. Each

collaborants’ telepointer and the extents of their main views are added to provide additional detail. Radar

views make collaborants’ location, presence, and actions visible, regardless of where they are located in the

workspace.

93

Extent of collaborants’
main view

Collaborants’ telepointer

Overview of
workspace

Figure 31. Radar view example [21]

6.3 Final Concluding Thoughts

This collaborative visualization framework provides a small piece for a Joint Battlespace

InfoSphere (JBI) solution to enable the sharing of information. This capability can aid the warfighter in

making decisions and fulfill the mission of Joint Vision 2020, which is to fight and win wars.

The COVE framework is a simple and effective means for rapidly developing collaborative

visualization applications. The use of Jini™ and JavaSpaces™ provides system robustness and effectively

enables the sharing of Java objects. The framework has met all established goals and should be considered

a success.

94

A. Appendix A - UML Diagrams

Appendix A contains the UML diagrams, showing the relationships between classes used in the

framework.

A.1 Relevant System Packages

Figure 32. COVE System Packages

95

A.2 commands Package

Figure 33. Commands Package Classes

96

A.3 desktop Package

Figure 34. Desktop Package Classes

97

Figure 35. Utility Classes used in cove.desktop Package

98

A.4 loader Package

Figure 36. Loader Classes

99

A.5 jspace Package

Figure 37. Session Service Classes

100

Figure 38. Session Management Classes

101

Figure 39. Various Classes used in cove.jspace Package

102

A.6 toolbar Package

Figure 40. Toolbar Package Classes

103

A.7 workspace Package

Figure 41. Workspace Classes

104

B. Appendix B - RMI Information

This appendix covers the basics of Remote Method Invocation (RMI). This is not intended to

provide a deep knowledge and cover the topic in depth, but should help provide additional background

information on what RMI is. Jini™ technology relies heavily on RMI system for its implementation.

Additional information can be found in RMI [54] and Appendix A of Core Jini [16].

B.1 Overview

Remote Method Invocation (RMI) provides the mechanisms needed for applications running on

different Java Virtual Machines (JVMs) to communicate with each other. Very much like Remote

Procedure Call (RPC), a well-known concept in distributed systems, RMI enables one application to call

another class’ method on another machine.

B.2 Remote Interfaces

Remote objects are objects that expose their methods so they can be called by other objects on

other machines. In client/server terminology, the remote object is the server and the caller of the method is

the client. Note that RMI is more robust than strict client/server architectures. Remote objects can have

element of both client and server within the same object.

For a client to make a call to the remote object, it first must know what interface it implements.

Thus, providing the client information on what methods are available on the server. RMI provides a set of

Application Programmer Interfaces (APIs) called the server’s remote interface. This interface defines what

methods can be invoked from outside the server’s JVM.

The remote interface of a server is simply defined by any interface that extends the RMI Remote

interface. This acts as a flag to RMI to indicate that this interface must have the mechanism implemented

to enable its methods to be called remotely. The server object that actually does the work is just the

implementation of this remote interface.

105

B.3 Stubs and Skeletons

The JVM only knows how to perform local method invocations. Thus, to enable remote method

invocations, a bit of extra code on top of the JVM must be used.

The first functionality needed to be added is for the server to be able to handle network

connections from clients, read data from those clients, and then turn that data into a local method

invocation. Second is for the client to make a local call on an object that represents the remote object.

(They must both directly invoke methods on local objects, because that is all the JVM knows how to do.)

This local object then creates the connection with the server and passes it data. Once the invocation

completes, the server must send the data back to the client.

On the server side, two classes handle most of the additional functionality. First, to provide

network communications, the server object extends a class called RMI UnicastRemoteObject. This

extension has all the low level detail necessary to send and receive messages. The second class, called the

skeleton, handles the calling of a specific method on a particular server object. The skeleton object is

paired with a server object, because it needs to know what methods are available, and what parameters and

return value they have. The skeleton’s main job is to take data received from the network, figure out what

operation to invoke on the server and return the result.

The client side is a little simpler, because all the client has to do is map the local object invocation

on the object representing the server to actual network communication. The local object that handles the

responsibility of packaging data and managing the network connection is called the stub. So, whenever a

client makes a remote invocation, it actually invokes a method in the local stub object. The stub then sends

a message to the remote JVM, where it is received and translated by the skeleton into a local method call.

Figure 42 illustrates the how the client and the server communicate through the use of stubs and skeletons.

This may seem like a lot of work, but most of it is transparent to the users. So when programming the

client, just write the code in terms of the remote interfaces that will be call.

106

Remote
Interface

ClientClient Server

Stub Skeleton

Remote
Impl

Figure 42. RMI - Client and Server Communicate via Stubs and Skeletons [16]

B.4 Serialization

Stub and skeletons take care of packaging the data to be sent over the network. The network only

understands one thing, and that is bytes. So, the stubs and skeletons take care of turning the parameter and

return value into streams of bytes and then reconstituting them on the other end. The mechanism for doing

this transformation into a stream of bytes is called serialization.

The Java language defines an interface called Serializable. This interface does not add any

additional methods that are required to be implemented, but acts as a tag to indicate to Java that this class

may be serialized.

Without this mechanism of serialization, RMI would have no way of sending complex objects

over the network. Any object that is used as a parameter or return value must be serializable. Primitive

types (e.g. int, boolean, long) are considered to be serializable.

For an object to become serializable several condition must exist. First, it must have a public no-

argument constructor defined. This is needed in the deserialization process. Second, the class may not

reference any non-serializable objects. If it does reference an object that is not serializable, this object

becomes non-serializable.

107

B.5 Parameters and Return Values

How does parameter passing in RMI actually work? Any parameter or return value that is used in

an RMI must be serializable. The fact that all the data is serialized prior to being sent has some important

ramifications. In local method calls, references to objects are passed. However, RMI copies the arguments

and return values of the remote calls. So the semantics for input and output objects are “pass by value”

rather than “pass by reference.”

What happens when an application passes a remote object into a remote method as an argument or

returns it from a remote method? To answer this question, RMI does some “under the covers” operation to

handle this situation. Say in the implementation of the remote server, one of its methods returns a reference

to this (or in other words, itself). On the server, this refers to the actual implementation object that lives in

the server’s virtual machine (VM). Remember that the client always deals with the server through its stub;

thus, it has no way of directly referring to an object on another VM. So what is desired when the server

returns itself, is for the client to receive a reference to the server’s stub. Thus, it gives the appearance that

the client is working directly with the remote object.

To make this happen, RMI searches for input and output parameters that are references to objects

that implement the Remote interface. When one of these is identified, it replaces the stub as appropriate.

So if a server returns a reference to itself, RMI “converts” it to a stub so the client can use it.

This transparent argument swapping gives the illusion that both the server and client are working

with local objects. This, in effect, maintains the “pass by reference” semantics. When the application

passes a remote object in or out of a method call, what actually is returned is a “live” reference to that

remote object.

B.6 Dynamic Code Loading

Serialization only packages up member data within an object; it does not package up the code that

implements the object. So if an object is sent over a network, how can it be used if the other end does not

108

get the code? The answer to this question is what sets RMI apart from traditional remote procedure call.

RMI allows a JVM to dynamically download implementation files when needed.

An example will best illustrate this concept. Consider a server that implements a sort routine that

takes as a parameter a List (well-defined interface that is part of Java 2) and returns a List. Since this is an

interface, the client can send a class that implements that List interface. Now consider the client wants to

use a new, custom implementation called QuickList. This works fine on a local system because the sort

routine only cares that the input speaks the List interface and the implementation of the QuickList is

available. This is a good example of polymorphism at work.

However, this situation presents a problem in the remote case. The server knows nothing about

this QuickList class and does not have the implementation available to it. To solve the problem, it would be

efficient to send the QuickList implementation to the server so it can operate on the new data structure and

return a result. RMI does exactly that: it sends the implementation of unknown classes to enable servers to

operate on them.

Normally, a Java application finds all the needed implementations of classes in it classpath – a set

of directories or JAR files containing class files. RMI extends the concept of the classpath with the notion

of a codebase. The codebase can be thought of as a new location for classfiles that is dynamically

allocated so a program can retrieve implementation to new classes.

Any program that exports classes sets a codebase that indicates where the implementations may be

found. The codebase is then sent to any downloading program tagged on the serialization of the object’s

data. The receiver then reconstitutes the serialized object and, if the classfile is not locally available,

downloads it from the location indicated by the codebase. RMI uses the ability of Java programs to copy

bytecodes from URLs and securely execute them to provide downloadable code.

A hypertext transfer protocol (http) server most commonly services the capability of downloadable

code. Programs that export code set a codebase, via a property to the server’s JVM, that contains the http

URL that indicates the location of the codebase. The most common use of downloadable code is the

109

transmission of remote object stubs to clients. This way the client only needs to know about the remote

interface that the server object implements.

More information regarding codebase can be found in a chapter called “How Codebase Works” in

Core Jini, Second Edition written by Keith W. Edwards [15].

B.7 Security Concerns

Being able to download code from another application on the fly creates some serious security

concerns. What if the code that is downloaded is malicious? Just like applets, RMI can provide a restricted

environment for running code obtained in this fashion.

In Java, a SecurityManager installed in the run time environment maintains application security.

To prevent malicious code from doing harm, RMI will not run any code if there is no SecurityManager

active in the downloading program – instead, the program must be able to find all classes, including stubs

in the local classpath.

This situation, however, is not suitable for production. RMI provides a simple security manager

that can be set to run, to enable downloadable code. It is called RMISecurityManager. A security policy

file that is passed in on the command line to a Java program configures security for the VM. The security

policy file defines certain permission for the code in an application, based on where the code came from.

B.8 Building, Compiling and Running RMI Programs

When building an RMI program, the first thing to do is write a remote interface that extends the

Remote interface. Next supply an implementation to the remote interface and a client that will use the

remote interface to make the method invocation. For illustration, three java files named: Add.java,

AddImpl.java, and AddClient.java are created. The Add.java file provides the remote interface. The

AddImpl.java file contains the implementation or the server code of an array adder. The last file,

AddClient.java, is the client code that will use the remote interface to add the contents of two arrays. Once

all the code is written, they need to be compiled using the Java compiler.

110

javac Add.java AddImpl.java AddClient.java

This command above will compile all the java files and output the appropriate bytecode class files.

Currently, no mention of stub or skeletons files has been made. So where do they get created? RMI

provides a stub compiler that is used to generate the stubs and skeletons called rmic. Thus, the following

command would need to be issued on the class that implements the remote interface.

rmic AddImpl

This command will generate two files, namely AddImpl_Stub.class and AddImpl_Skel.class. These are then

used to enable the RMI to occur.

To run a RMI application, the RMI registry process must be started first. This is started by the

rmiregistry command. The server application is then run and bound it to the RMI registry. A simple

command such as: java AddImpl does the trick. This must be done so the client will have a server to access

when it makes its remote procedure call. With all that accomplished, the application can finally be run with

the simple command: java AddClient. The AddClient class will then use the AddImpl server to add two

arrays and send back a result.

111

Bibliography

1. Alexander, Christopher, and others. A Pattern Language. New York: Oxford University Press,
1977.

2. Boyd, John R. A Discourse on Winning and Losing. Report No: MU43947. Set of briefing slides
available at Air University Library, Maxwell AFB, AL, August 1987.

3. Butler, Sean C. A Flexible Framework for Collaborative Visualization Applications Using
JavaSpaces™. MS thesis, AFIT/GCE/ENG/01M-01. Graduate School of Engineering and
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 2001
(ADA391953).

4. Card, S. K. and others. Readings in Information Visualization: Using Vision to Think. San
Francisco: Morgan Kaufmann Publishers, Inc., 1999.

5. Ceglar, Aaron, and Paul Calder. “A New Approach to Collaborative Frameworks using Shared
Objects,” Proceedings of the Computer Science Conference, ACSC 2001. 3-10. 24th
Australasian, 2001.

6. Chabert, Annie, Ed Grossman, Larry Jackson, and Stephen Pietrovicz, “NCSA Habanero –
Synchronous Collaborative Framework and Environment.” White Paper, NCSA, Champaign
IL, 1998.

7. Chabert, Annie, Ed Grossman, Larry S. Jackson, Stephen R. Pietrowiz, and Chris Seguin. “Java
Object-Sharing in Habanero,” Communication of the ACM, 41, 6: 69-76 (June 1998).

8. Chuah, Mei C. and Stephen G. Eick. “Information Right Glyphs for Software Management Data,”
IEEE Computer Graphics and Applications: 24-29 (July/August 1998).

9. Cowan, Jeffery L. From Air Force Fighter Pilot to Marine Corps Warfighting: Colonel John Boyd,
His Theories on War, and their Unexpected Legacy. Thesis. United States Marine Corp
Command and Staff College, Quantico VA, 2000.

10. Department of Defense. America’s Air Force Vision 2020. AF Vision 2020. Washington DC: HQ
USAF. http://www.af.mil/vision.

11. Department of Defense. Joint Vision 2020. Chairman Joint Chief of Staff. http://www.dtic.mil/jcs/.
20 September 2001.

12. Department of the Army, and U.S. Marine Corps. Headquarters. Operational Terms and Graphics.
FM 101-5-1/MCRP 5-2A Washington: HQ USA and HQ USMC, 30 September 1997.

13. Deutsch, Peter. “The Seven Fallacies of Distributed Computing.” Excerpts from internal Sun
Microsystems meetings. http://java.sun.com/people/jag/Fallacies.html. 9 January 2002.

112

http://www.af.mil/vision
http://www.dtic.mil/jcs/
http://java.sun.com/people/jag/Fallacies.html

14. Driggers, Brent, Jay Alameda, and Ken Bishop. “Distributed Collaboration for Engineering
Scientific Applications,” ACM 1997 Workshop on Java for Science and Engineering
Computations. Las Vegas, NV USA, 21 June 1997.

15. Edwards, W. Keith. “Jini Planet: How Codebase Works.” Excepts from Core Jini Second Edition.
http://www.kedwards.com/jini/codebase.html. 5 December 2001.

16. Edwards, W. Keith. Core Jini™. New Jersey: Prentice Hall, 1999.

17. Ellis, C., and S. Gibbs. “Concurrency Control in Groupware Systems,” Proceeding of ACM
SIGMOD. 399-407. 1989.

18. Fayad, M. and others. Building Application Frameworks. New York: Wiley, 1999.

19. Freeman, Eric and others. JavaSpaces Principles, Patterns and Practice. Massachusetts: Addison-
Wesley, 1999.

20. Gamma, Erich and others. Design Patters Elements of Reusable Object-Oriented Software.
Massachusetts: Addison-Wesley, 1995.

21. Gutwin, Carl and Saul Greenberg. “Design for Individuals, Design for Groups: Tradeoffs between
Power and Workspace Awareness,” Proceedings of ACM CSCW '98. Seattle WA, 1998.

22. Gutwin, Carl and Saul Greenburg. “The Mechanics of Collaboration: Developing Low Cost
Usability Evaluation Methods for Shared Workspaces,” Proceedings of IEEE 9th International
Workshops on WEB Enabling Technologies: Infrastructure for Collaborative Enterprises, 2000
(WET ICE 2000). 98-103. Gaithersburg MD, 14 Jun - 16 Jun 2000.

23. Gutwin, Carl, and Saul Greenberg. “Workspace Awareness for Groupware,” Proceeding of
Computer-Human Interaction Conference (CHI 96). 1996.

24. Gutwin, Carl, Saul Greenberg, and Mark Roseman. “Workspace Awareness Support with Radar
Views,” Proceeding of Computer-Human Interaction Conference (CHI 96). 1996.

25. Hammond, Grant L. “The Essential Boyd.” Unpublished Paper. Director of the Center for Strategy
and Technology, Air War College, Maxwell AFB AL, 2001.
http://www.belisarius.com/modern_business_strategy/hammond/essential_boyd.htm.

26. Holzhauer, Douglas and others. “Building an Experimental Joint Battlespace Infosphere (YJBI-
CB).” Report to AFRL/IFTC. Air Force Research Laboratory/ Information Directorate, Rome
NY, 2001.

27. Jacobs, Timothy M and Sean C. Butler. “Collaborative Visualization for Military Planning,”
Proceedings of the SPIE ITCOM 2001. Denver CO, 2001.

28. Juth, Stephen. Collaboration Components for Programming Real-time Synchronous Groupware
Applications. MS Thesis. Graduate School-New Brunswick, Rutgers New Jersey, October
1998.

113

http://www.kedwards.com/jini/codebase.html
http://www.belisarius.com/modern_business_strategy/hammond/essential_boyd.htm

29. Khetawat, Amit Kumar. Thesis on Collaborative Computing On the Internet. Masters Thesis.
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh
NC, May 1997.

30. Koch, M., D. Kohler, and M. Burger. “Awareness Information in Wide Area Network.” Technical
Report. Applied Informatics and Distributed Systems Group, Depart of Informatics,
Technische Universitat Munchen, 1996.

31. Krasner, G. E. and S. T. Pope. “A Cookbook for using the Model-View-Controller User Interface
Paradigm in Smalltalk,” Journal on Object Oriented Programming, (August/September 1988).

32. Li, Wen, Weicong Want, and Ivan Marsic. “Collaboration Transparency in the DISCIPLE
Framework,” Proceeding of the International ACM SIGGROUP Conference on Supporting
Group Work. 326-333. 1999.

33. Marsic, Ivan. “DISCIPLE: A Framework for Multimodal Collaboration in Heterogeneous
Environments.” ACM Computing Surveys, Vol 31 Issue 2es, Article 4, (1999).

34. Maurer, Martha E. “Coalition Command and Control.” National Defense University, Fort McNair,
Washington DC, 1996.

35. McCarthy, J. and others. Building the Joint Battlespace Infosphere, Volume 1: Summary. Research
Report SAB-TR-99-02, USAF Scientific Advisory Board, December 17 1999.

36. McQuay, William K. “Distributed Collaborative Environments for the 21st Century Engineer.”
Proceedings of the IEEE 2000 National Aerospace and Electronics Conference, 2000.
NAECON 2000. 407-414. 10-12 October 2000.

37. MindSim Corp. http://www.mindsim.com/MindSim/Corporate/OODA.html. September 2001.

38. Mucks, J. H., and L. A. Jesse. “Web-Enabled Timeline Analysis System.” White Paper.
http://webtas.com/white-papers.shtml. 17 January 2002.

39. Munson, J. and P. Dewan. “A Concurrency Control Framework for Collaborative Systems.”
Technical Report, Department of Computer Science, University of North Carolina, 1996.

40. “NCSA Habanero”, NCSA website. http://havefun.ncsa.uiuc.edu/habanero. 20 September 2001.

41. Özsu, M. Tamer, and Patrick Valduriez. Principles of Distributed Database Systems 2nd. ed.
Prentice Hall, Inc., ISBN 0-13-659707-6, 1999

42. Paranj, Bala. “Java Tip 68: Learn how to implement the Command pattern in Java”, Java World Tip
website. http://www.javaworld.com/javaworld/javatips. 5 February 2002.

43. Patterson, John F., and others. “Rendezvous: An Architecture for Synchronous Multi-User
Applications,” Proceeding of the CSCW 90. 317-328. October 1990.

114

http://www.mindsim.com/MindSim/Corporate/OODA.html
http://webtas.com/white-papers.shtml
http://havefun.ncsa.uiuc.edu/habanero
http://www.javaworld.com/javaworld/javatips

44. “Requirements for an Air Force Collaborative Enterprise Environment, Version 2.” Paper on
Collaborative Technology Development. Air Force Research Laboratory, Wright-Patterson
AFB OH, January 2000.

45. Roberts, Simon and Jon Byous. “Distributed Events in Jini™ Technology.” Paper published on
Java Developer Connection™. http://java.sun.com. June 1999.

46. Roussev, Vassil and others. “Composable Collaboration Infrastructure Based on Programming
Patterns,” Proceeding of the ACM Conference on Computer Supported Cooperative Work
(CSCW), 2000. 117-126. Philadelphia PA. 2-6 December 2000.

47. Schuckmann, Christian and others. “Designing Object-Oriented Synchronous Groupware with
COAST,” Proceedings of the ACM 1996 Conference on Computer Supported Cooperative
Work. 30-38. Boston MA, 16-20 Nov 1996.

48. Scientific Advisory Board, United States Air Force, “Building the Joint Battlespace Infosphere.”
SAB-TR-99-02. December 17, 1999.

49. Stang, Mark and Stephen Whinston. “Enterprise Computer with Jini™ Technology.” IT
Professional, Vol. 3 No. 1: 33-38 (January/February 2001).

50. Sun Microsystems, Inc. “How to User Root Panes.” Excerpt from The Java™ Tutorial; Trail:
Creating a GUI with JFC/Swing; Lesson: Using Swing Components.
http://java.sun.com/docs/books/tutorial/uiswing/components/rootpane.html. 9 January 2002.

51. Sun Microsystems, Inc. “JavaBeans™ - The Only Component Architecture for Java™
Technology.” Except from JavaBeans™ web resources.
http://java.sun.com/products/javabeans. 3 January 2002.

52. Sun Microsystems, Inc. JavaBeans™ 1.01 API Specification. Mountain View CA, July 1997.

53. Sun Microsystems, Inc. JavaSpaces™ Service Specification Version 1.1. Palo Alto CA, October
2000.

54. Sun Microsystems, Inc. Java™ Remote Method Invocation Specification. Revision 1.50. JDK 1.2.
Mountain View CA, October 1998.

55. Sun Microsystems, Inc. Jini™ Technology 1.1 API Documentation. Mountain View CA, 1999.

56. Sun Microsystems, Inc. Jini™ Technology Core Platform Specification. Version 1.1. Mountain
View CA, 2000.

57. United States Air Force Scientific Advisory Board. Information Management to Support the
Warrior. Report SAB-TR-98-02, December 1998.

58. Wang, Weicong, and others. “Design of the DISCIPLE Synchronous Collaboration Framework,”
Proceeding of the 3rd IASTED International Conference Internet and Multimedia Systems and
Applications. 316-324. Nassau, Grand Bahamas. 18-21 October 1999.

115

http://java.sun.com/
http://java.sun.com/docs/books/tutorial/uiswing/components/rootpane.html
http://java.sun.com/products/javabeans

59. Wood, Jason. Collaborative Visualization. Ph.D. dissertation. School of Computer Studies,
University of Leeds, Leeds UK, 1998.

116

Vita

Captain Chad M. Harris spent many years an Army dependent. His family settled down in

Bountiful, Utah where he graduated from Viewmont High School in May 1991. He then pursued his

studies in Computer Science at Brigham Young University (BYU) in Provo, Utah. He served a mission for

the Church of Jesus Christ of Latter-day Saints from May 1992 to May 1994 in Osorno, Chile. Upon return

from his mission he met his wife and was married 15 June 1995. Later he completed his undergraduate

education and graduated with a Bachelor of Science degree in Computer Science and was commissioned in

December 1997.

In route to his first assignment he went to Keesler AFB, Biloxi Mississippi for Basic

Communication Officer Training (BCOT). Following graduation from BCOT he was assigned to Falcon

AFB, which later changed its name to Schriever AFB, as Chief of the Software Configuration Management

shop. There he was entrusted to be the Mission Support Flight Commander and served in that capacity

until his selection to the Graduate School of Engineering and Management, Air Force Institute of

Technology (AFIT). Upon graduation from AFIT, he will be assigned to the 690th Computer System

Squadron at Lackland AFB, San Antonio, Texas.

117

�����������	�
���
���� �
������� ����� ����� � � � ����� � � � � � � !�"�# � $ %�& % ' (%�) * *

+ ,�- . / 01- 243 5�2 .�6 7�7 (!�! (8 8 8 8 9: ; < : = < > : : > ? ,�- . / 01- 2�2 @�/ .BA C D E F G H DJI�K F D L D
M ,�2 N 2 O .
51P�3RQ S�T 2 N 2 O .
UWVJX�Y1Y�U�Z�X
[JU I1\]�^�]�\ _ ` U�Y \ a U I1\ X
bdc�[�U A ^�e XJ[Jf `�_ \ b�gih \ b \ jI1^ VJk�b�X�Y1X
g�l

m n ,�o�01P 2 - 5�o�24P�S�p�T . -

q ,�5�S 2 r 01- s Q t
k C G G L D u V K C v A w u V C x E C L y�u�`�_ U�c

z ,�/ . - { 0�- p�N P |}01- | 5�P�N ~ 5�2 N 01P�P 5�p�. s Q t 51P�345�3�3�- . Q Q s . Q tU L G c�� G � F�\ y D E L E � E F � � I1F � K y � � � � �g G C v � C E F�_ � K � � � � � ^�y � L y F F G L y � C y v A C y C � F �4F y E1� U�c \ I1� ^ b��> � ; :4� w _ E G F F E u Z � L � v L y ��� � :e � U�c Z�X�k	� ; � = = < � � � ;
� ,�Q / 01P Q 01- N P |�� p
01P�N 2 01- N P |�51|1. P o @}P 51p�. s Q t 5�P�34513�3�- . Q Q s . Q tU L G c�� G � F [F D F C G � K Y C � � G C E � G � � \ c I V � U�c A VJ�U E E y�� � � � � � C D k�� � � K C � F G u � K w � w> � ^ � F � E G � y L � D � C G � ��C �[
� �RF u b�l�� = � ��� < � ;�� �VJ� ���}��� =�� ; ��= = : < � � > : ��_ b � ; � � < � � > :^��4C L � � v � � � � C D w K � � � K C � F G ��G � w C � w �4L �

� , / . - { 01- p�N P |}01- |�5�P�N ~ 5�2 N 01P- . / 01- 24P�S�p�T . -
�J� ¡ ¢ £1¤1¥ ¢ ¦ §J£�¢ ¨ © ª�« ¨ ¬

+ , Q / 0�P Q 0�- � p
01P�N 2 0�- ® Q�51o�- 0�P @�p�s Q t
�J� ¯1°�¢ � ¡ ¤

+ ± , Q S�/ / O . p�. P 2 5�- @}P 012 . Q
Y E w VJ� � w I1L � � E K �

A
w h C � � � D u ^ b�g u�� � = � �1> ; ; < � ; � ;�² � > � � u I1L � � E K � w h C � � � D ��C � L E w F v �

+ ? , 3�N Q 2 - N T S 2 N 0�P � 5�³�51N O 51T N O N 2 @�Q 2 5�2 . p�. P 2U���� [
X]�^1� c�XJ[i� ` Z�Y \ V´[^ Y ^ U _ ^
µ ��\ _ I [\ Z `�I1\ X�b ` b�Y \ A \ I1^1� w

+ M , 5�T Q 2 - 51o 2\ E�L D1v L � � L � � � E�E � C � K L F ¶ F
��� E � C � � y v F G D E C y v L y ��� � � � ��x � F ² L y � � G �4C E L � y4� F E ��F F yRL y v L ¶ L v � C � D1E K C E�C G F�D F x C G C E F v � F � � G C x K L � C � � � wI�� � ��F � � < � y � �
y4E F � K y L · � F D�� � ��� � y � � � D F v�E � v F C � ��L E K4E K L D1v L � � L � � � E � � C G F�� � � � C � � G C E L � yRC y v4L y � � G �4C E L � y4¶ L D � C � L � C E L � y w I1K L D�E K F D L Dv F ¶ F � � x�D�C � F y F G L � � � F ² L � � F � G C �4F � � G �4E K C E�D � x x � G E D�� � E K4� � � � C � � G C E L � yRC y v4L y � � G �4C E L � y4¶ L D � C � L � C E L � y w \ E�L y E G � v � � F D�E K FVJ� � � C � � G C E L ¶ F�]�L D � C � L � C E L � yR^�y ¶ L G � y �4F y E�� V
X]�^ �J� G C �4F � � G ��u ��K L � K�D L ��x � L � L F D1E K F�v F ¶ F � � x �RF y E � � G F C � < E L �4F4D � y � K G � y � ��D��� � E L < ��D F GJC x x � L � C E L � y D1� � v F � � � x � L y � E K F�F � F �4F y E D � � � � � � C � � G C E L � y � G � ��E K F�C x x � L � C E L � y w I�K L D�C � � � ��D�v F ¶ F � � x F G D1E �4� � � � D � y� � L � v L y � C x x � L � C E L � y D�C y v � F C ¶ F�E K F
v L � � L � � � E L F D � � � � � � C � � G C E L � y�� L w F w � � y � � G G F y � � � � y E G � � D u � D F G�C ��C G F y F D D u�D F D D L � y��4C y C � F �4F y E uF E � w � E � E K F � G C �4F � � G � wI�K F � G C �4F � � G ����D F D�C y � � ¸ F � E�D K C G L y � C x x G � C � K4E � D K C G F�L y � � G �4C E L � yRC y v�¶ L F ��D�� F E ��F F y�x C G E L � L x C y E D�L yRC�� � � � C � � G C E L ¶ F�D F D D L � y wI�K L D�C x x G � C � K�E C � F D�C v ¶ C y E C � F � � D F ¶ F G C � h C ¶ C�E F � K y � � � � L F DJ� L w F w h C ¶ C Z F C y D j1u h L y L j1u C y v h C ¶ C _ x C � F D j � w h C ¶ C Z F C y D j�F D E C � � L D KRC��F � � < � y � ��y�D E C y v C G v � � G�C x x � L � C E L � y D1E �4� x F G C E F���L E K L y4E K F � G C �4F � � G � w h L y L j}D F G ¶ L � F D1x G � ¶ L v F � G C �RF � � G ��D E C � L � L E � C y v4F y C � � F�� � v FD K C G L y � C � G � D D1E K F�y F E � � G � w X � ¸ F � E D�C G F�D K C G F v4� F E ��F F yRG F � � E F�� � L F y E D�E K G � � � K�E K F h C ¶ C _ x C � F D j}D F G ¶ L � F w+ m , Q S�T ¹ . o 2�2 . - p�QVJ� � � C � � G C E L � y�u \ y � � G �4C E L � y4]�L D � C � L � C E L � y�u c G C �4F � � G ��u�_ � � E ��C G F U G � K L E F � E � G F D u h L y L u h C ¶ C _ x C � F D u h C ¶ C Z F C y D

+ � , P�S�p�T . -01{/ 51|�. Q� = :
+ � n , P 5�p�.
01{�- . Q / 01P�Q N T O .�/ . - Q 01PY E w VJ� � w I1L � � E K �

A
w h C � � � Dn ,�- . / 01- 2

`�y � � C D D L � L F v
º , 5�T Q 2 - 51o 2
`�y � � C D D L � L F v »

, 2 r�N QR/ 51|�.
`�y � � C D D L � L F v

+ z , O N p�N 2 512 N 01P�01{5�T Q 2 - 51o 2
`�`

Q ¼ n ½ ¾ n ¿ ¾�{ À ¿ Á ? � �RÂ Ã Ä Å Æ Ç È É Ç ÊË Ì Í Î Ï Ì Ð Ñ Í Ò�Ñ Ó Ô Õ Ö × Ö Ø Ò Ù Ú Û Ü Ù Ý Þ

ß à Í�á â Ñ ã Ð Ï�Ì Í á ä Ì Ø Ð å æ1Ñ â Ì Ò Í å1ç ä Ì Ø à Ð Î Ï ä ã ã Í Ï Ø Ð ä å1ä ç Ð å ç ä Ì è é Ø Ð ä å1Ð Î Í Î Ø Ð è é Ø Í Ò�Ø ä1é ê Í Ì é æ Í�Ý�à ä â Ì á Í Ì Ì Í Î á ä å Î Í ë Ð å Ï ã â Ò Ð å æ�Ø à Í Ø Ð è Í ç ä Ì Ì Í ê Ð Í ì Ð å æ1Ð å Î Ø Ì â Ï Ø Ð ä å Î ë Î Í é Ì Ï à Ð å æ1Í í Ð Î Ø Ð å æ�Ò é Ø é�Î ä â Ì Ï Í Î ëæ é Ø à Í Ì Ð å æ�é å Ò�è é Ð å Ø é Ð å Ð å æ Ø à Í Ò é Ø é å Í Í Ò Í Ò ë é å Ò Ï ä è á ã Í Ø Ð å æ é å Ò Ì Í ê Ð Í ì Ð å æ Ø à Í Ï ä ã ã Í Ï Ø Ð ä å�ä ç Ð å ç ä Ì è é Ø Ð ä å Ù1Ö Í å Ò�Ï ä è è Í å Ø Î Ì Í æ é Ì Ò Ð å æ Ø à Ð Î Ñ â Ì Ò Í å�Í Î Ø Ð è é Ø Í ä Ì é å Ó�ä Ø à Í Ì é Î á Í Ï Ø ä ç Ø à Ð Î Ï ä ã ã Í Ï Ø Ð ä åä ç�Ð å ç ä Ì è é Ø Ð ä å ë�Ð å Ï ã â Ò Ð å æ�Î â æ æ Í Î Ø Ð ä å Î
ç ä Ì�Ì Í Ò â Ï Ð å æ�Ø à Í
Ñ â Ì Ò Í å ë�Ø ä�î Í á é Ì Ø è Í å Ø�ä ç�î Í ç Í å Î Í ë ï1é Î à Ð å æ Ø ä å4ð Í é Ò ñ â é Ì Ø Í Ì Î�Ö Í Ì ê Ð Ï Í Î ë�î Ð Ì Í Ï Ø ä Ì é Ø Í
ç ä Ì1× å ç ä Ì è é Ø Ð ä å�ò á Í Ì é Ø Ð ä å Î
é å Ò�ó Í á ä Ì Ø Îô õ ö õ ÷ ø õ Ý Þ Þ ù ë Ý ú Ý û ü Í ç ç Í Ì Î ä å1î é ê Ð Î�ð Ð æ à ì é Ó ë Ö â Ð Ø Í�Ý ú õ ÷ ë Ô Ì ã Ð å æ Ø ä å ë ý Ô�ú ú ú õ ú ø ÷ Û õ ú Ù�ó Í Î á ä å Ò Í å Ø Î Î à ä â ã Ò�Ñ Í é ì é Ì Í Ø à é Ø å ä Ø ì Ð Ø à Î Ø é å Ò Ð å æ�é å Ó�ä Ø à Í Ì á Ì ä ê Ð Î Ð ä å�ä ç ã é ì ë å ä�á Í Ì Î ä å�Î à é ã ã Ñ ÍÎ â Ñ þ Í Ï Ø Ø ä é å Ó�á Í å é ã Ø Ó ç ä Ì ç é Ð ã Ð å æ Ø ä Ï ä è á ã Ó�ì Ð Ø à é Ï ä ã ã Í Ï Ø Ð ä å�ä ç Ð å ç ä Ì è é Ø Ð ä å Ð ç Ð Ø Ò ä Í Î å ä Ø Ò Ð Î á ã é Ó�é Ï â Ì Ì Í å Ø ã Ó ê é ã Ð Ò�ò ÿ � Ï ä å Ø Ì ä ã å â è Ñ Í Ì Ù/ O . 51Q .�3 0�P 0�24- . 2 S�- P�@�01S�-d{ 01- p´2 0�2 r�.J51T 0�³1.J513�3�- . Q Q�, ± ,�3 512 . Q�o 0�³1. - . 3}6 � � � �´(�� � 9A C G > : :��
< A C G > : : >

m º ,�|1- 5�P 24P�S�p�T . -
m
»
,�/ - 01|�- 5�pi. O . p�. P 24P�S�p�T . -

m ¾ ,�/ - 0�¹ . o�24P�S�p�T . -
m � ,�2 51Q �4P�S�p�T . -
m � ,��R01- �4S�P�N 2RP�S�p�T . -

+ + , Q / 0�P Q 0�- � p
01P�N 2 0�- ® Q4- . / 01- 2P�S�p�T . - s Q t

+ q , Q . o�S�- N 2 @�o�O 5�Q Q N { N o 512 N 01P�01{ �
+ � º , 2 . O . / r 01P�.�P�S�p�T . -
	 � � � � � ��� � � �� � � � �� � = � �1> ; ; < � ; � ;�² � > � �

	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Problem Statement
	Goals
	Constraints

	Document Overview

	Background
	Command and Control (C2) Domain
	OODA Loop

	Visionary Concepts
	Joint Vision 2020
	Air Force Vision 2020
	Joint Battlespace InfoSphere (JBI)
	JBI Basic Concept
	Enabling Technologies

	Application Frameworks
	Object-Oriented Techniques

	Collaboration
	Types of Collaborations
	Asynchronous Collaboration
	Synchronous Collaboration

	Levels of Collaboration
	Elements of Collaboration

	Information Visualization
	Knowledge Crystallization
	Maps
	Symbols
	Labels
	Color
	Interaction
	Overview and Detail
	Filtering
	Zoom

	Distributed Systems
	Performance and Latency
	Failures
	Concurrency and Consistency

	Enabling Technologies
	Jini™
	Discovery
	Lookup
	Leasing
	Remote Events
	Transactions

	JavaSpaces™

	Related Research
	NCSA Habanero
	DISCIPLE Framework
	COAST
	ColVis

	Background Summary

	Methodology and Design
	Collaborative Framework
	Criteria
	Visual Collaboration

	System Architecture/Design
	Architecture Choices
	Session Service Architecture
	Object Sharing Via JavaSpaces™
	Concurrency Control
	Consistency Control
	JavaBeans™
	Session Manager

	Replicated Client Architecture
	Desktop
	Workspace
	Bean Loading
	Bean Synchronization

	Implementation
	Session Service Implementation
	Collaborative Framework Components
	SessionManager Class
	Desktop Class
	Session Class
	Workspace
	WorkspaceContents Class
	UserAccount Class

	Event Processing
	Synchronization Mechanism
	Distributed/Remote Event Model
	SessionManager Listener
	Workspace Contents Listener
	Glass Pane
	Bean Listener

	Remote Code Access
	Transactions – Solutions to Consistency and Parti

	Results
	Comparative Analysis
	Criteria Satisfaction
	Summary of Analysis

	COVE Framework Benefits
	Serialization Problem with JavaBeans™

	Conclusions and Future Work
	Conclusion
	Future Work
	Enhancements
	Customizable Components
	Protection Mechanisms
	Session Recording and Playback
	Complex Bean Integration
	Passing of Object Differences

	Addition Visual Awareness Capabilities
	TelePointers
	Radar Views

	Final Concluding Thoughts

	Bibliography
	Vita

